Presentation is loading. Please wait.

Presentation is loading. Please wait.

Power System Damping in Iceland based on phasor measurements

Similar presentations


Presentation on theme: "Power System Damping in Iceland based on phasor measurements"— Presentation transcript:

1 Power System Damping in Iceland based on phasor measurements
Sethuraman Ganesan ABB

2 Presentation Outline Introduction to the Icelandic Power System
Damping problems PMU installations and test results Power System Model Setup And verification Local PSS Based on shaft speed Wide-Area PSS Based on frequency difference measured by PMUs Comparison of Results Conclusions Future Work

3 Generator Inertia Diagram
Transmission lines 220 kV 132 kV 66 kV Laxá 28 MW Mjólká Rangárvellir Krafla 60 MW Laxárvatn Varmahlíð Bjarnarflag 3 MW Geiradalur Blanda 150 MW Glerárskógar Hryggstekkur Hrútatunga Vatnshamrar Teigarhorn Sultartangi 120 MW Brennimelur Hrauneyjafoss 210 MW Korpa Vatnsfell 90 MW Hólar Geitháls Sog 89 MW Sigalda 150 MW Hamranes Hydro power station Búrfell 270 MW Geothermal power station Prestbakki Substation Power intensive industry 150 km

4 Icelandic Power System
RES 521: PMU Blanda Power St. 3x50 MW Sigalda Power St. 150 MW Krafla Power St. 2x30 MW Transmission lines 220 kV 132 kV 66 kV Laxá 28 MW Mjólká Rangárvellir Krafla 60 MW Laxárvatn Varmahlíð Bjarnarflag 3 MW Geiradalur Blanda 150 MW Glerárskógar Hryggstekkur Hrútatunga Vatnshamrar Teigarhorn Sultartangi 120 MW Brennimelur Hrauneyjafoss 210 MW Korpa Vatnsfell 90 MW Hólar Geitháls Sog 89 MW Sigalda 150 MW Hamranes Hydro power station Búrfell 270 MW Geothermal power station Prestbakki Substation Power intensive industry 150 km

5 Test Recordings in Iceland, February 27, 2002
Transmission lines 220 kV 132 kV 66 kV Laxá 28 MW Mjólká Rangárvellir Krafla 60 MW Reclosing of the Ring, after a planned outage Laxárvatn Varmahlíð Bjarnarflag 3 MW Geiradalur Blanda 150 MW Glerárskógar Hryggstekkur Hrútatunga Vatnshamrar Teigarhorn Sultartangi 120 MW Brennimelur Hrauneyjafoss 210 MW Korpa Vatnsfell 90 MW Hólar Geitháls Sog 89 MW Sigalda 150 MW Hamranes Hydro power station Búrfell 270 MW Geothermal power station Prestbakki Substation Power intensive industry 150 km

6 Voltage Phase-Angle Blanda-Sigalda 132 kV
12 11 10 9 8 Angle [degrees] Time [s]

7 PMU Output Signals Closing of Ring, February 27, 2002 Phasors V, I
Line P and Q Feedback   synchronizing /t  damping 1 2 3 4 5 rad/s 0.2 0.4 MW 90 95 degrees 11 10.5 10 9.5 9 =B–S Line P /t

8 Fault Recordings in Iceland, February 16, 2001
Forced Outage: Line Fault & Trip Transmission lines 220 kV 132 kV 66 kV Laxá 28 MW Mjólká Rangárvellir Krafla 60 MW Laxárvatn Varmahlíð Bjarnarflag 3 MW Geiradalur Blanda 150 MW Glerárskógar Hryggstekkur Hrútatunga Vatnshamrar Teigarhorn Sultartangi 120 MW Brennimelur Hrauneyjafoss 210 MW Korpa Vatnsfell 90 MW Hólar Geitháls Sog 89 MW Sigalda 150 MW Hamranes Hydro power station Búrfell 270 MW Geothermal power station Prestbakki Substation Power intensive industry 150 km

9 Power Oscillations, February 16, 2001
Line just east of Krafla tripped after fault Recorded and simulated Krafla MW output Recording 20 40 60 80 100 Time [s] MW 10 30 Recording Simulation 20 10 30 40 MW 2 4 6 8 [s] 700 s of undamped oscillations

10 Test Cases Fault Location
Sigalda Blanda Krafla Mode shape of interarea mode (5) Fault Location: No Fault (0) Southwest (1) West (2) Between Blanda and Krafla (4) East of Krafla (5)

11 Characteristic of Speed Input PSS at Krafla
10 15 5 rad/s 20 40 60 80 100 120 140 degrees

12 Root Locus for Local and Wide-area PSS
-0.6 -0.4 -0.2 Real [1/s] Imag [rad/s] 3.3 3.4 3.5 -1.5 -1.0 -0.5 8.0 8.5 9.0 9.5 15 10 5 -4 -2 Gain from 0 to 20 * gain local = 18  gain wide-area =12

13 Simulation of the February 16 Disturbance
2 4 6 8 10 80 60 40 20 -20 MW 140 kV 130 120 110 p.u. 0.05 0.0 -0.05 Speed-input Local PSS (dashed) Wide-area PSS (solid) P on line west of Krafla Voltage at Krafla PSS output Saturation…..

14 Conclusions Wide-area PSS and Local PSS give basically similar results in this study Wide-area PSS need, however, a lower gain to to provide the same interarea mode damping This indicates that the mode observability of the frequency difference signal is higher than that of shaft speed. Local PSS provides better damping of local modes.

15 Future Work I The question arise: What about a combined PSS,
combining the superior local mode damping of the local PSS with the higher interarea mode observability of the wide-area PSS.

16 Braking Resistor On-off Control that Complements PSS
Future Work II Braking Resistor On-off Control that Complements PSS 3 MW at Blanda f for on-off Frequency PSS Output Blanda f Blanda P Braking Resistor in Blanda Krafla –, Blanda - -, Sigalda .. -1 1 2 3 4 5 6 7 8 9 10 MW Hz p.u. 0.5 0.0 -0.5 0.05 -0.05 50.2 50.0 49.8

17


Download ppt "Power System Damping in Iceland based on phasor measurements"

Similar presentations


Ads by Google