Download presentation

Presentation is loading. Please wait.

1
**The Michaelis-Menten Equation**

ET = E + ES v= Vmax = k2 ET v/Vmax = k2 ES / k2 ET = ES/ ET v/Vmax = ES/ ET v/Vmax = ES/ E + ES ¿How to know ES? This equation cannot be explicitly integrated, however, without simplifying assumptions, two possibilities are: 1. Assumption of equilibrium. Leonor Michaelis and Maud Menten, building on the work of Victor Henri, assumed that k-1 » k2, so that the first step of the reaction reaches equilibrium. ES = E * S / Ks Ks is the dissociation constant of the first step in the enzymatic reaction 1

2
**The Michaelis-Menten Equation**

Assumption of steady-state. Figure illustrates the progress curves of the various participants in reaction under the physiologically common conditions that substrate is in great excess over Enzyme ([S] » [E]). ES maintains a steady state and [ES] can be treated as having a constant value: The so called steady state assumption, a more general condition than that of equilibrium, was first proposed in 1925 by G. E. Briggs and B. S. Haldane 2

3
**ES = E * S /(k-1+k2)/k1 ES = E * S / KM The Michaelis-Menten Equation**

Solving for [ES]: The Michaelis constant, KM , is defined as ES = E * S / KM Therefore: 3

4
**The Michaelis-Menten Equation**

The expression of the initial velocity (v0) of the reaction, the velocity at t=0, thereby becomes v/Vmax = ES/ (E + ES) v/Vmax = (E*S)/Km/ (E + (E*S)/Km ) v/Vmax = S/ Km / (1 + S/Km) v/Vmax = S / Km + S This expression, the Michaelis-Menten equation, is the basic equation of enzyme kinetic. The maximal velocity of a reaction, Vmax occurs at high substrate concentrations when the enzyme is saturated, that is, S>> Km, and ET is entirely in the ES form v= Vmax when 4

5
**Significance of the Michaelis Constant**

The Michaelis constant, KM, has a simple operational definition. At the substrate concentration at which [S] = KM, this equation yields v0 = Vmax/2 so that KM is the substrate concentration at which the reaction velocity is half maximal 5

8
**k2= 10/5 = 2 moles/mg seg Vmax= 10 M/seg Km=10 x10-5 M**

Si en el ensayo se usaron 5mg/L de preparación enzimática, entonces: v= Vmax = k2 ET k2= 10/5 = 2 moles/mg seg ¿Qué predicciones podemos hacer a partir de esta información?

9
**- dS/dt = vi = So dX/dt Al iniciar: t = 0, S = So A cualquier tiempo:**

T = t S = S X = (So-S)/So - dS/dt = vi = So dX/dt Graficar por ejemplo : (So – S)/t vs (1/t) ln (So/S) 9

10
**Two-Stage Catalysis of Chymotrypsin**

Acylation O CH3–C–O– –NO2 Nitrophenol acetate O C CH3–C HO– –NO2 O - C Kinetics of reaction Deacylation (slow step) CH3COOH + H2O Time (sec) Nitrophenol O-H C 現在 已經知道 chymotrypsin 的催化機制分成 acylation 及 deacylation 兩個階段，其研究是利用 nitrophenol acetate 為基質所進行的；在早期的觀察中，發現催化生成 nitrophenol 的速率有兩個 phases，起先相當快放出 nitrophenol，然後變慢並一直維持此一速度。 利用兩階段式催化機制，可說明為何開始速率會比較快。 這是因為第一階段的 acylation 反應很快，而剛開始酵素都空閒著，一抓到基質就水解並放出 nitrophenol，因此黃色產物迅速上升。但是因為醋酸根還留在酵素上，準備進行第二步的 deacylation，而此一步驟相當慢速，即為 速率決定步驟 rate-limiting step；酵素要在加入水分子，釋出醋酸後，才能繼續吸入 nitrophenol acetate 繼續下一輪反應。因此出現了兩相的反應速率。 Two-phase reaction Adapted from Dressler & Potter (1991) Discovering Enzymes, p.169 E5-21

11
**DESVIACIONESA M&M From the steady state assumption::**

dE/dt = -k1 E*S + k-1 ES + k3 ES’ From the steady state assumption:: dE/dt = 0 -k1 E*S + k-1 ES + k3 ES’ dES/dt = k1 E*S – ES (k-1 + k2) dES’/dt = k2 ES – k3 ES’ dES/dt = 0 ES = k1 E*S / (k-1 + k2) v = dP1/dt = k2 ES v = dP2/dt = k3 ES’ dES’/dt = 0 ES’ = k2 ES / k3 ET= E + ES + ES’ dP2/dt = v = k3 ES’ v = k3 k2 ES / k3 v = k2 k1 E*S / (k-1 + k2) Vmax = k3 ET Vmax = k3 (E + ES + ES’) Vmax = k3 (E + k1 E*S / (k-1 + k2) + k2 ES / k3 Vmax = k3 (E + k1 E*S / (k-1 + k2) + k2 k1 E*S / (k-1 + k2) / k3 ) Vmax = k3 E + k1 k3 E*S / (k-1 + k2) + k2 k1 E*S / (k-1 + k2) 11

12
v / Vmax = k2 k1 E*S / (k-1 + k2) k3 E + k1 k3 E*S / (k-1 + k2) + k2 k1 E*S / (k-1 + k2) v / Vmax = k2 k1 S k3 (k-1 + k2) + k1 k3 S + k2 k1 S v / Vmax = k2 k1 S k3 (k-1 + k2) + k1 S (k2 + k3) Vmax = k3 ET v / Vmax = k2 S / (k2 + k3) k3 (k-1 + k2) / (k2 + k3) + k1 S v = k2 k3 ET S / (k2 + k3) k3 (k-1 + k2) / (k2 + k3) + k1 S

13
13

14
**K-2+ Keq = Vmax f * Kp Vmax f = k2 k3 ET k-2 + k3 +k2 Vmax r * Ks**

Vmax r = k-1 k-2 ET k-1 + k2 +k-2 v = Vmax f Kp S – Vmax r Ks P KsKp + KpS + KsP Ks = k-1 k-2 + k-1 k3 + k2 k3 k1( k2 + k-2 + k3) Kp = k-1 k-2 + k-1 k3 + k2 k3 k-3( k-1 + k2 + k-2) v = Vmax f S – P / Keq Ks + S + (Ks/Kp) P 14

15
15

16
16

17
17

18
18

19
19

Similar presentations

Presentation is loading. Please wait....

OK

Chapter 5 (part 2) Enzyme Kinetics.

Chapter 5 (part 2) Enzyme Kinetics.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

What does appt only means Free ppt on etiquettes Ppt on call center management system Ppt on council of ministers kuwait Ppt on metro rail in hyderabad Ppt on fdi in retail sector in india Ppt on children's day in india Ppt on nature and scope of human resource management Ppt on iso 9000 series Working of flat panel display ppt on tv