Download presentation

Presentation is loading. Please wait.

Published byDianna Shoesmith Modified over 2 years ago

1
François Fages MPRI Bio-info 2006 Formal Biology of the Cell Modeling, Computing and Reasoning with Constraints François Fages, Constraint Programming Group, INRIA Rocquencourt mailto:Francois.Fages@inria.fr http://contraintes.inria.fr/

2
François Fages MPRI Bio-info 2006 Overview of the Lectures 1.Introduction. Formal molecules and reactions in BIOCHAM. 2.Formal biological properties in temporal logic. Symbolic model-checking. 3.Continuous dynamics. Kinetics models. 4.Learning kinetic parameter values. Constraint-based model checking. 5.…

3
François Fages MPRI Bio-info 2006 Biochemical Kinetics Study the concentration of chemical substances in a biological system as a function of time. BIOCHAM concentration semantics: Molecules: A 1,…, A m |A|=Number of molecules A [A]=Concentration of A in the solution: [A] = |A| / Volume ML -1 Solutions with stoichiometric coefficients: c 1 *A 1 +…+ c n * A n

4
François Fages MPRI Bio-info 2006 Law of Mass Action The number of A+B interactions is proportional to the number of A and B molecules, the proportionality factor k is the rate constant of the reaction A + B k C the rate of the reaction is k*[A]*[B]. dC/dt = k A B dA/dt = -k A B dB/dt = -k A B Assumption: each molecule moves independently of other molecules in a random walk (diffusion, dilute solutions, low concentration).

5
François Fages MPRI Bio-info 2006 Interpretation of Rate Constants k’s Complexation: probabilities of reaction upon collision (specificity, affinity) Position of matching surfaces Decomplexation: energy of bonds (giving dissociation rates) Different diffusion speeds (small molecules>substrates>enzymes…) Average travel in a random walk: 1 μm in 1s, 2μm in 4s, 10μm in 100s For an enzyme: 500000 random collisions per second for a substrate concentration of 10 -5 50000 random collisions per second for a substrate concentration of 10 -6

6
François Fages MPRI Bio-info 2006 Signal Reception on the Membrane present(L,0.5). present(RTK,0.01). absent(L-RTK). absent(S). parameter(k1,1). parameter(k2,0.1). parameter(k3,1). parameter(k4,0.3). (k1*[L]*[RTK], k2*[L-RTK]) for L+RTK L-RTK. (k3*[L-RTK], k4*[S]) for 2*(L-RTK) S.

7
François Fages MPRI Bio-info 2006 Michaelis-Menten Enzymatic Reaction An enzyme E binds to a substrate S to catalyze the formation of product P: E+S k1 C k2 E+P E+S km1 C compiles into a system of non-linear Ordinary Differential Equations dE/dt = -k 1 ES+(k 2 +k m1 )C dS/dt = -k 1 ES+k m1 C dC/dt = k 1 ES-(k 2 +k m1 )C dP/dt = k 2 C

8
François Fages MPRI Bio-info 2006 Michaelis-Menten Enzymatic Reaction An enzyme E binds to a substrate S to catalyze the formation of product P: E+S k1 C k2 E+P E+S km1 C compiles into a system of non-linear Ordinary Differential Equations dE/dt = -k 1 ES+(k 2 +k m1 )C dS/dt = -k 1 ES+k m1 C dC/dt = k 1 ES-(k 2 +k m1 )C dP/dt = k 2 C After simplification, supposing C 0 =P 0 =0, we get E=E 0 -C,

9
François Fages MPRI Bio-info 2006 Michaelis-Menten Enzymatic Reaction An enzyme E binds to a substrate S to catalyze the formation of product P: E+S k1 C k2 E+P E+S km1 C compiles into a system of non-linear Ordinary Differential Equations dE/dt = -k 1 ES+(k 2 +k m1 )C dS/dt = -k 1 ES+k m1 C dC/dt = k 1 ES-(k 2 +k m1 )C dP/dt = k 2 C After simplification, supposing C 0 =P 0 =0, we get E=E 0 -C, S 0 =S+C+P,

10
François Fages MPRI Bio-info 2006 Michaelis-Menten Enzymatic Reaction An enzyme E binds to a substrate S to catalyze the formation of product P: E+S k1 C k2 E+P E+S km1 C compiles into a system of non-linear Ordinary Differential Equations dE/dt = -k 1 ES+(k 2 +k m1 )C dS/dt = -k 1 ES+k m1 C dC/dt = k 1 ES-(k 2 +k m1 )C dP/dt = k 2 C After simplification, supposing C 0 =P 0 =0, we get E=E 0 -C, S 0 =S+C+P, dS/dt = -k 1 (E 0 -C)S+k m1 C dC/dt = k 1 (E 0 -C)S-(k 2 +k m1 )C

11
François Fages MPRI Bio-info 2006 BIOCHAM Concentration Semantics To a set of BIOCHAM rules with kinetic expressions e i {e i for S i =>S’ i } i=1,…,n one associates the system of ODEs over variables {A 1,, A k } dA k /dt= Σ n i=1 r i (A k )*ei - Σ n j=1 l j (A k )*e j where r i (A) (resp. l i (A)) is the stoichiometric coefficient of A in S i (resp. S’ i ).

12
François Fages MPRI Bio-info 2006 BIOCHAM Concentration Semantics To a set of BIOCHAM rules with kinetic expressions e i {e i for S i =>S’ i } i=1,…,n one associates the system of ODEs over variables {A 1,, A k } dA k /dt= Σ n i=1 r i (A k )*ei - Σ n j=1 l j (A k )*e j where r i (A) (resp. l i (A)) is the stoichiometric coefficient of A in S i (resp. S’ i ). Note on compositionality: The union of two sets of reaction rules is a set of reaction rules… So BIOCHAM models can be composed to form complex reaction models by set union.

13
François Fages MPRI Bio-info 2006 Compositionality of Reaction Rules Towards open decomposed modular models: Sufficiently decomposed reaction rules, E+S C =>E+P, not S P if competition on C Sufficiently general kinetics expression, parameters as possibly functions of temperature, pH, pressure, light,… different pH=-log[H+] in intracellular and extracellular solvents (water) Ex. pH(cytosol)=7.2, pH(lysosomes)=4.5, pH(cytoplasm) in [6.6,7.2] Interface variables, controlled either by other modules (endogeneous variables) or by fixed laws (exogeneous variables).

14
François Fages MPRI Bio-info 2006 Numerical Integration Methods System dX/dt = f(X). Initial conditions X 0 Idea: discretize time t 0, t 1 =t 0 +Δt, t 2 =t 1 +Δt, … and compute a trace (t 0,X 0,dX 0 /dt), (t 1,X 1,dX 1 /dt), …, (t n,X n,dX n /dt)… (providing a linear Kripke structure for model-checking…)

15
François Fages MPRI Bio-info 2006 Numerical Integration Methods System dX/dt = f(X). Initial conditions X 0 Idea: discretize time t 0, t 1 =t 0 +Δt, t 2 =t 1 +Δt, … and compute a trace (t 0,X 0,dX 0 /dt), (t 1,X 1,dX 1 /dt), …, (t n,X n,dX n /dt)… (providing a linear Kripke structure for model-checking…) Euler’s method: t i+1 =t i + Δt X i+1 =X i +f(X i )*Δt error estimation E(X i+1 )=|f(X i )-f(X i+1 )|*Δt

16
François Fages MPRI Bio-info 2006 Numerical Integration Methods System dX/dt = f(X). Initial conditions X 0 Idea: discretize time t 0, t 1 =t 0 +Δt, t 2 =t 1 +Δt, … and compute a trace (t 0,X 0,dX 0 /dt), (t 1,X 1,dX 1 /dt), …, (t n,X n,dX n /dt)… (providing a linear Kripke structure for model-checking…) Euler’s method: t i+1 =t i + Δt X i+1 =X i +f(X i )*Δt error estimation E(X i+1 )=|f(X i )-f(X i+1 )|*Δt Runge-Kutta’s method: intermediate computations at Δt/2

17
François Fages MPRI Bio-info 2006 Numerical Integration Methods System dX/dt = f(X). Initial conditions X 0 Idea: discretize time t 0, t 1 =t 0 +Δt, t 2 =t 1 +Δt, … and compute a trace (t 0,X 0,dX 0 /dt), (t 1,X 1,dX 1 /dt), …, (t n,X n,dX n /dt)… (providing a linear Kripke structure for model-checking…) Euler’s method: t i+1 =t i + Δt X i+1 =X i +f(X i )*Δt error estimation E(X i+1 )=|f(X i )-f(X i+1 )|*Δt Runge-Kutta’s method: intermediate computations at Δt/2 Adaptive step method: Δt i+1 = Δt i /2 while E>Emax, otherwise Δt i+1 = 2*Δt i

18
François Fages MPRI Bio-info 2006 Numerical Integration Methods System dX/dt = f(X). Initial conditions X 0 Idea: discretize time t 0, t 1 =t 0 +Δt, t 2 =t 1 +Δt, … and compute a trace (t 0,X 0,dX 0 /dt), (t 1,X 1,dX 1 /dt), …, (t n,X n,dX n /dt)… (providing a linear Kripke structure for model-checking…) Euler’s method: t i+1 =t i + Δt X i+1 =X i +f(X i )*Δt error estimation E(X i+1 )=|f(X i )-f(X i+1 )|*Δt Runge-Kutta’s method: intermediate computations at Δt/2 Adaptive step method: Δt i+1 = Δt i /2 while E>Emax, otherwise Δt i+1 = 2*Δt i Rosenbrock’s stiff method: solve X i+1 =X i +f(X i+1 )*Δt by formal differentiation

19
François Fages MPRI Bio-info 2006 Multi-Scale Phenomena Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin present(En,1e-8). present(S,1e-5). absent(C). absent(P). (k1*[En]*[S],km1*[C]) for En+S C. k2*[C] for C => En+P. parameter(k1,4e6). parameter(km1,25). parameter(k2,15). Complex formation 5e-9 in 0.1s Product formation 1e-5 in 1000s

20
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation After short initial period (0.1s), the complex concentration reaches its limit. Assume dC/dt=0

21
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation After short initial period, the complex concentration reaches its limit. Assume dC/dt=0 From dC/dt = k 1 S(E 0 -C)-(k 2 +k m1 )C we get C = k 1 E 0 S/(k 2 +k m1 +k 1 S)

22
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation After short initial period, the complex concentration reaches its limit. Assume dC/dt=0 From dC/dt = k 1 S(E 0 -C)-(k 2 +k m1 )C we get C = k 1 E 0 S/(k 2 +k m1 +k 1 S) = E 0 S/(((k 2 +k m1 )/k 1 )+S) = E 0 S/(K m +S) where K m =(k 2 +k m1 )/k 1

23
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation After short initial period, the complex concentration reaches its limit. Assume dC/dt=0 From dC/dt = k 1 S(E 0 -C)-(k 2 +k m1 )C we get C = k 1 E 0 S/(k 2 +k m1 +k 1 S) = E 0 S/(((k 2 +k m1 )/k 1 )+S) = E 0 S/(K m +S) where K m =(k 2 +k m1 )/k 1 dS/dt = -dP/dt = -k 2 C = -V m S / (K m +S) where V m = k 2 E 0.

24
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation Assuming dC/dt=0, we have dE/dt=0 and C= E 0 S / (K m +S). Michaelis-Menten rate: dP/dt = -dS/dt = V m S / (K m +S) (reaction velocity) V m =k2*E 0 K m =(km1+k2)/k1

25
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation Assuming dC/dt=0, we have dE/dt=0 and C= E 0 S / (K m +S). Michaelis-Menten rate: dP/dt = -dS/dt = V m S / (K m +S) (reaction velocity) V m =k2*E 0 (maximum velocity at saturating substrate concentration) K m =(km1+k2)/k1

26
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation Assuming dC/dt=0, we have dE/dt=0 and C= E 0 S / (K m +S). Michaelis-Menten rate: dP/dt = -dS/dt = V m S / (K m +S) (reaction velocity) V m =k2*E 0 (maximum initial velocity) K m =(km1+k2)/k1 (substrate concentration with half maximum velocity) Experimental measurement: The initial velocity is linear in E 0 hyperbolic in S 0

27
François Fages MPRI Bio-info 2006 Quasi-Steady State Approximation Assuming dC/dt=0, hence dE/dt=0 and C= E 0 S / (K m +S). Michaelis-Menten rate: dP/dt = -dS/dt = V m S / (K m +S) (reaction velocity) V m =k2*E 0 K m =(km1+k2)/k1 BIOCHAM syntax macro(Vm, k2*[En]). macro(Km, (km1+k2)/k1). MM(Vm,Km) for S =[En]=> P. macro(Kf, Vm*[S]/(Km+[S])). Kf for S =[En]=> P.

28
François Fages MPRI Bio-info 2006 Competitive Inhibition present(En,1e-8). present(S,1e-5). (k1*[En]*[S],km1*[C]) for En+S C. k2*[C] for C => En+P. parameter(k1,4e6). parameter(km1,25). parameter(k2,15). present(I,1e-5). k3*[C]*[I] for C+I => CI. parameter(k3,5e5). Complex formation 4e-9 in 0.04s Product formation 3e-8 in 3s

29
François Fages MPRI Bio-info 2006 Competitive Inhibition (isosteric) present(En,1e-8). present(S,1e-5). (k1*[En]*[S],km1*[C]) for En+S C. k2*[C] for C => En+P. parameter(k1,4e6). parameter(km1,25). parameter(k2,15). present(I,1e-5). k3*[En]*[I] for En+I => EI. parameter(k3,5e5). Complex formation 2.5e-9 in 0.4s Product formation 2.5e-9 in 1000s

30
François Fages MPRI Bio-info 2006 Allosteric Inhibition (or Activation) (i*[En]*[I],im*[EI]) for En+I EI. parameter(i,1e7). parameter(im,10). (i1*[EI]*[S],im1*[CI]) for EI+S CI. parameter(i1,5e6). parameter(im1,5). i2*[CI] for CI => EI+P. parameter(i2,2). Complex formation 2e-9 in 0.4s Product formation 1e-5 in 1000s

31
François Fages MPRI Bio-info 2006 Cooperative Enzymes and Hill Equation Dimer enzyme with two promoters: E+S 2*k1 C 1 k2 E+P C 1 +S k’1 C2 2*k’2 C 1 +P E+S k-1 C 1 C 1 +S 2*k’-1 C2 Let K m =(k -1 +k 2 )/k 1 and K’ m =(k’ -1 +k’ 2 )/k’ 1 Non-cooperative if K m =K’ m Michaelis-Menten rate: V m S / (K m +S) where V m =2*k 2 *E 0. (hyperbolic velocity vs substrate concentration) Cooperative if k’ 1 >k 1 Hill equation rate: V m S 2 / (K m *K’ m +S 2 ) where V m =2*k 2 *E 0. (sigmoid velocity vs substrate concentration)

32
François Fages MPRI Bio-info 2006 MAPK kinetics model

33
François Fages MPRI Bio-info 2006 Cell Cycle Control [Qu et al. 2003]

34
François Fages MPRI Bio-info 2006 Lotka-Voltera Autocatalysis 0.3*[RA] for RA => 2*RA. 0.3*[RA]*[RB] for RA + RB => 2*RB. 0.15*[RB] for RB => RP. present(RA,0.5). present(RB,0.5). absent(RP).

35
François Fages MPRI Bio-info 2006 Hybrid (Continuous-Discrete) Dynamics Gene X activates gene Y but above some threshold gene Y inhibits X. 0.01*[X] for X => X + Y. if [Y] lt 0.8 then 0.01 for _ => X. 0.02*[X] for X => _. absent(X). absent(Y).

Similar presentations

OK

François Fages MPRI Bio-info 2007 Formal Biology of the Cell Protein structure prediction with constraint logic programming François Fages, Constraint.

François Fages MPRI Bio-info 2007 Formal Biology of the Cell Protein structure prediction with constraint logic programming François Fages, Constraint.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on methods of data collection Ppt on group development process Ppt on potential reuse of plastic waste in road construction Free ppt on conductors and insulators Ppt on structure of chromosomes Ppt on endangered species of india and africa Ppt on rc phase shift oscillator connections Ppt on pre ignition problems Ppt on conservation of wildlife and natural vegetation definition Best ppt on right to information act