Presentation is loading. Please wait.

Presentation is loading. Please wait.

CLSI EP23 Laboratory Quality Control Based on Risk Management James H. Nichols, PhD, DABCC, FACB Chairholder EP23 Document Development Committee Professor.

Similar presentations


Presentation on theme: "CLSI EP23 Laboratory Quality Control Based on Risk Management James H. Nichols, PhD, DABCC, FACB Chairholder EP23 Document Development Committee Professor."— Presentation transcript:

1 CLSI EP23 Laboratory Quality Control Based on Risk Management James H. Nichols, PhD, DABCC, FACB Chairholder EP23 Document Development Committee Professor of Clinical Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Medical Director, Clinical Chemistry Nashville, Tennessee, USA

2 Objectives Review key aspects of risk management. Describe the various types of control processes. Identify CLSI document EP23 as a resource for developing a laboratory quality control (QC) plan based on risk management. Use CLSI document EP23 to develop a quality control plan (QCP) based on risk management for a simple, moderate complexity device. 2

3 Risk Would you walk underneath this piano? 3

4 Risk Management Risk management is not a new concept; laboratories: – Evaluate the performance of new devices. – Troubleshoot instrument problems. – Respond to physician complaints. – Estimate harm to a patient from incorrect results. – Take actions to prevent errors. Risk management is a formal term for what clinical laboratories are already doing every day. 4

5 Risk Management Definition Systematic application of management policies, procedures, and practices to the tasks of analyzing, evaluating, controlling, and monitoring risk (ISO 14971) 5

6 Risk Definition Risk – the chance of suffering or encountering harm or loss (Webster's Dictionary and Thesaurus. Ashland, OH: Landall, Inc.; 1993). Risk can be estimated through a combination of the probability of occurrence of harm and the severity of that harm (ISO/IEC Guide 51). Risk, essentially, is the potential for an error to occur that could lead to patient/staff harm. 6

7 What could go wrong? 7

8 Sources of Laboratory Error Environmental: – Temperature – Humidity – Light intensity – Altitude Operator: – Improper specimen preparation, handling – Incorrect test interpretation – Failure to follow test system instructions Specimen: – Bubbles – Clots – Incorrect tube additive Analysis: – Calibration factor incorrect – Mechanical failure 8

9 Managing Risk With a Quality Control Process 9

10 Quality Control Advantages – QC monitors the end product (result) of the entire test system. – QC has target values: if assay recovers the target, then everything is assumed stable (ie, instrument, reagent, operator, sample). Disadvantages – When a problem is detected, one must go back and reanalyze patients since the last good QC. – If results are released, then results may need to be corrected. Need to get to fully automated analyzers that eliminate errors up front – Until that time, need a robust QC plan (QCP) 10

11 Types of Quality Control On-Board or Analyzer QC – built-in device controls or system checks Internal QC – laboratory-analyzed surrogate sample controls External QC – blind proficiency survey Other types of QC – control processes either engineered by a manufacturer or enacted by a laboratory to ensure result reliability 11

12 12

13 Quality Control Limitations No single QC procedure can cover all devices, because the devices may differ. QC practices developed over the years have provided laboratories with some degree of assurance that results are valid. Newer devices have built-in electronic controls, and on- board chemical and biological controls. QC information from the manufacturer increases the users understanding of devices overall quality assurance requirements. ISO. Clinical laboratory medicine – In vitro diagnostic medical devices – Validation of user quality control procedures by the manufacturer. ISO Geneva, Switzerland: International Organization for Standardization;

14 Laboratory- Manufacturer Partnership Developing a quality plan surrounding a laboratory device requires a partnership between the manufacturer and the laboratory. Some sources of error may be detected automatically by the device and prevented, while others may require the laboratory to take action, such as analyzing surrogate sample QC on receipt of new lots of reagents. Clear communication of potential sources of error and delineation of laboratory and manufacturer roles for how to detect and prevent those risks is necessary. 14

15 Quality Control 15

16 CLSI Document EP23 Laboratory Quality Control Based on Risk Management; Approved Guideline (EP23-A ) James H. Nichols, PhD, DABCC, FACB, Chairholder of the document development committee EP23 describes good laboratory practice for developing a QCP based on the manufacturers risk mitigation information, applicable regulatory and accreditation requirements, and the individual health care and laboratory setting. 16

17 The Scenario CLSI document EP23 provides guidance on developing an appropriate QCP that will: – Save time and money. – Use electronic and/or integrated QC features. – Use other sources of QC information. – Conform to ones laboratory and clinical use of the test. 17

18 Developing a QCP 18

19 The Quality Control Toolbox Every QC tool has its strengths and weaknesses (there is no perfect QC tool). Implement a combination of tools in order to properly control a test. EP23 explains the strengths and weaknesses of the different QC processes. 19

20 Examples of Quality Control Tools Intralaboratory QC Interlaboratory QC Integrated (built-in) QC Measuring system function checks Electronic system checks Calibration checks Repeat testing of patient samples Monitoring aggregated patient results Implausible values Delta checks Correlation of multiple analytes in same sample 20

21 What Could Go Wrong? 21

22 Gather Information for the Risk Assessment Gather information from several sources: – Regulatory and accreditation requirements Clinical Laboratory Improvement Amendments Test/test system information Users manual, reagent package insert, literature – Health care and testing site settings Temperature conditions, operator training programs – Medical requirements for the test results Allowable performance specifications via physicians 22

23 Developing a Process Map Break down all phases of the test or test system into steps, so that weak points can be identified. Each step can be analyzed to find potential failure modes that could present significant risk to patients. Process can then be further analyzed to see if controls can be put into place to avoid the failures. 23

24 Process Map 24

25 Key Process Steps View the preexamination (preanalytical), examination (analytical), and postexamination (postanalytical) areas of the laboratory. Think about what steps can be taken to reduce potential errors unrelated to the actual testing of the sample. 25

26 Where Is the Risk in the Process? What could possibly go wrong? 26

27 Identify the Risks 27

28 Some areas to consider for weaknesses in the process: – Testing personnel training and competency – Reagent/calibrator/parts procurement and storage – Patient sample acceptability – System startup – System calibration – Loading and testing of patient samples – Proper device function – Test result review Hazard or Risk Identification 28

29 Risk Assessment 29

30 Perform the Risk Assessment Identify the potential failures and their causes. – Review the process map, fishbone diagram, manufacturers instructions, etc. Assess each potential failure. Where a failure could occur, add an element to the QCP that will reduce the possibility of that failure, making residual risk acceptable. – For some types of failures, the manufacturers information may already have a quality check in place. 30

31 Construct a table; see which types of errors are detected and which ones are not. – If not detected, it must be included in the QCP. For each possible failure, assess the possibility of that failure. – Do this for each identified failure. – Use all of the information gathered in order to make these assessments. Perform the Risk Assessment (contd) 31

32 Assemble the Quality Control Plan Use the information gathered earlier to assess all of the identified risks and their control measures. Construct the QCP. Include each of the identified QCP actions in the QCP. 32

33 What could go wrong? 33

34 Monitor Quality Control Plan for Effectiveness Verify that the QCP that is put in place actually works. Continue to monitor errors and control failures. If an error occurs: – Take the appropriate corrective action. – Investigate the cause of the error. – Once the cause is understood, evaluate whether any changes need to be made in the QCP. 34

35 Review any complaints that the laboratory receives from health care providers. – These complaints may include pointing out another source of QC failure that must be addressed. For patient safety, the QCP should be reviewed and monitored on an ongoing basis to ensure that the QCP is optimal. Monitor Quality Control Plan for Effectiveness (contd) 35

36 Dont Be DiscouragedRisk Management Is Documenting Much of What We Already Do! 36

37 Polling Question #1 What is a QCP? 1)The frequency of liquid controls for a test 2)A form that defines required specifications of materials from suppliers 3)A document that describes the practices, processes, and sequences of specified activities to control the quality of a particular measuring system 4)None of the above 37

38 The Scenario A laboratory director wants to develop a QCP – Incorporates the right QC processes for the specific test – Uses adequate QC to control for their potential error sources – Follows manufacturers instructions A unit-use blood gas analyzer will be used as the example. 38

39 Developing a Quality Control Plan 39

40 Polling Question #2 Raise your hand if you are responsible for blood gas or electrolyte testing in your facility, or if you are a manufacturer or distributor of blood gas/electrolyte test systems. 40

41 Gather the Information 41

42 Blood Gas and Electrolytes Generic unit-use blood gas/lytes analyzer in a same-day surgical center Low volume: tests/day Need for daily liquid QC uses two kits ($10 each) and adds to turnaround time (TAT). Adoption of nontraditional QC through EP23 would improve cost, test, and labor efficiency. 42

43 Blood Gas and Electrolytes Portable clinical analyzer for in vitro quantification of various analytes in whole blood Analyzers and cartridges should be used by healthcare professionals trained to use the system according to the facilitys policies and procedures. 43

44 System consists of: – Portable clinical analyzer – Test cartridges sealed in foil pouch for protection during storage – Quality assurance materials Control solutions Calibration verification set – Data Management System Server class computer Data management software Wireless connectivity and LIS/HIS interfaces 44 Blood Gas and Electrolytes Device

45 Blood Gas and Electrolytes Unit use cartridge contains all components to perform the testing – Calibrating solution – Reagents – Sample handling system – Sensors Analyzer automatically controls all steps of the testing process: – Fluid movement – Calibration – Reagent mixing – Thermal control 45

46 Cartridge Operations Cartridges are standardized to plasma core lab methods using multi-point calibration curves stored in the device memory that are stable over many lots Upon insertion, a calibrant solution in the cartridge is passed across the sensors. Signals produced by the sensors responses to calibrant are measured – A one-point calibration adjusts the offset of stored multi-point calibration curve. Analyzer then moves sample over sensors, and the signal of the sensor responses to the sample are measured off the adjusted calibration curve 46

47 Polling Question #3 What types of quality control processes can help laboratories manage their risk of errors for a blood gas/electrolyte test system? 1)Liquid quality control samples 2)Manufacturer checks and simulated internal electronic controls 3)Staff training and competency 4)All of the above 47

48 Internal Control Processes Simulated internal QC - diagnostic check of the edge connector, internal electronics, and analyte circuitry. Internal QC simulates electronic signals produced by the sensors during a cartridge test. An isolated region of the internal circuit board sends a range of simulated sensor signals through the cartridge measurement channels Range of signals encompasses entire linear range expected from blood analytes Next, conductivity out of the connector pins is measured, insuring no contamination is present in the edge connector which would interfere with the test. Signal measurements must fall within strict predetermined thresholds to pass. 48

49 Quality Control Recommendations Internal Simulated QC: – Automatically performed by device every 8 hrs – If significant change in analyzer temp (cold to hot) – Whenever performance of device in question Liquid QC: – Each shipment of cartridges – New lots of cartridges – If cartridges experience temperature shift >8°C (15 ° F) – Periodically as required by facility policies Temperature Verification – Monitored continuously during each patient test, but verification cartridge available and recommended annually, or as required by facility policy 49

50 Identify Weak Steps for Hazards or Risk of Error Create a Process Map 50

51 Polling Question #4 What are some common sources of error for a blood gas/electrolyte test system? 1)Shipping and storage temperature of cartridges 2)Operator technique 3)Device failure 4)All of the above 51

52 Finding the Failure Points Hazard Identification 52

53 Process Map: Finding the Failure Points Work from the current package insert Test order – electronic or hardcopy Test collection – Incorrect collection – bubbles, sample exposure to air – Wrong tube type – calcium titrated, heparinized BG tubes – Indirect phlebotomy – line draw contamination – Undermixing/overmixing – sample clots, hemolysis – Analytic delay – glucose, BG, pH, iCa, etc. Analysis – Wrong sample volume loaded onto cartridge – Incorrect procedure, timing, result interpretation – Expired reagent – Reagent exposure during shipment – Degradation during storage Infection Control Result reporting errors 53

54 Identify Control Processes for Each Hazard That Maintain Risk at a Clinically Acceptable Level Conduct a Risk Assessment 54

55 Blood Gas and Electrolytes Risk Assessment Refer to Appendix A, CLSI document EP18 for a more comprehensive list of error sources. Work from the manufacturers current package insert. Samples – Physician order – POCT possible w/o order, need written or electronic physician order before commencing test. – Wrong tube type – train to use BG syringes/tubes – Line contamination – train on preferred collection and techniques if catheter collection is only option – Sample mixing – analyzer has clot detection, but will not detect hemolysis - train on proper mixing technique – Analytic delay – YES – train to analyze immediately, no longer than mins of collection 55

56 Operator – Operator lock-out – prevents use of analyzer by untrained operators – Sample volume detection – Analyzer detects inadequate sample volume and prevents overloading. – Incorrect procedure, timing, result interpretation – analysis and result interpretation fully automated, clotted sample or bubbles will be detected by analyzer. – Expired reagents – cartridges are bar-coded with lot number and expiration date, analyzer prevents use past expiration – Wireless Connectivity – data management automates reporting of result provided patient properly identified, train on proper patient ID, use barcoded wristbands – Infection control – train to clean and disinfect after each use 56 Blood Gas and Electrolytes Risk Assessment (contd)

57 Blood Gas and Electrolytes Risk Assessment Reagents – Test exposure outside specifications (eg, temperature, humidity) during shipment – analyze liquid QC with each shipment – Lot-to-lot variability – analyze liquid QC with each lot – Liquid QC degradation – monitor refrigerator (2 to 8°C), bring to room temperature at least 30 minutes before use, discard within 30 days of opening bottle – Degradation during storage – monitor storage conditions, room temp for 2 years). If refrigerated, bring to room temperature at least 30 minutes before use, (analyze liquid QC due to temp change). What about other QC frequency? 57

58 Polling Question #5 How should laboratories determine the optimal frequency of liquid quality controls? 1)Refer to the manufacturers package insert recommendations 2)Identify local and regional regulatory requirements 3)Conduct a risk assessment 4)All of the above 58

59 Liquid Quality Control Frequency Minimum – follow manufacturer recommendations and regulatory requirements (CLIA for BG analysis – one QC sample q 8 hr, two levels q 24 hrs, one QC w/ each pt sample unless calibration every 30 mins) Manufacturer recommends liquid QC with each – Shipment – New lot – Significant change in cartridge temperature (>8 °C) – Whenever question of test system performance Options for determining liquid QC frequency – Peer publications – verify what others are already doing – Develop QC rules based on six-sigma of test system – Verify in your facility: – analyze 2 levels each day for several weeks, then reduce to every few days, weekly or monthly after more experience with test system QC-lockout assists with compliance 59

60 Environment – Incorrect collection – train staff anaerobic phlebotomy – Compliance with documentation – risk bases on prior issues with other testing noted at this location (refrigerator monitoring, QC documentation, etc.) Clinical Application – Immediate medical decisions – test results used to manage critical patients, higher risk since only one chance to get right result! – Sample not stable – analyze immediately, presents higher risk since cant be repeated! 60 Blood Gas and Electrolytes Risk Assessment (contd)

61 Summarize the Quality Control Plan 61

62 Blood Gas and Electrolytes Quality Control Plan Analyze liquid QC. – Each new shipment* – Start of a new lot* – After significant change in cartridge temperature (>8 °C) * – Whenever uncertainty about analyzer performance* – Monthly (based on facility verification and experience with test) – Note: Simulated multi-level quality control automatic every 8 hours and internal calibration with each test cartridge ** Use checklist to document training/competency. – Test only when electronic or written physician order – Proper patient identification – Use BG syringes/tubes for specimen collection – Arterial BG collection (preferred), or line draws as required – Use anaerobic technique – Mix specimens appropriately and analyze immediately – Monitor refrigerator and room temperatures – Clean and disinfect analyzers after each use * ( * Manufacturer recommendations) (** Mandated by accreditation regulations) 62

63 Polling Question #6 What should a laboratory do once a QCP is drafted? 1)Have a party; the laboratory has now proved the quality of its test. 2)Nothing; once developed, the QCP is the end of the risk management process. 3)Monitor its QCP for effectiveness, and modify the plan as needed. 4)None of the above. 63

64 Monitor for Failure/Errors and Modify Quality Control Plan as Needed Implement the Quality Control Plan 64

65 Quality Control Plan Implementation: BG/Electrolyte Monitors Frequency of analyzer error codes Liquid QC failure rates Frequency of specimen issues – hemolysis, clots, or other problems Number of physician complaints: results that dont match clinical situation Any other unexpected error 65

66 Risk Management will help you learn about your processes and weaknesses 66

67 Summary Risk management is something laboratories are already doing. EP23 simply formalizes this. A QCP is necessary for result quality, and each QCP is unique. A QCP is the industry standard. It depends upon the extent to which the devices features achieve their intended purpose in union with the laboratorys expectation for ensuring quality results. Once implemented, the QCP is monitored for effectiveness and modified as needed to maintain risk at a clinically acceptable level. 67

68 Now that youve survived this… 68


Download ppt "CLSI EP23 Laboratory Quality Control Based on Risk Management James H. Nichols, PhD, DABCC, FACB Chairholder EP23 Document Development Committee Professor."

Similar presentations


Ads by Google