Presentation is loading. Please wait.

Presentation is loading. Please wait.

MAJOR HISTOCOMPATABILITY COMPLEX Dr.T.V.Rao MD 1.

Similar presentations


Presentation on theme: "MAJOR HISTOCOMPATABILITY COMPLEX Dr.T.V.Rao MD 1."— Presentation transcript:

1 MAJOR HISTOCOMPATABILITY COMPLEX Dr.T.V.Rao MD 1

2 MHC - The Major Histocompatibility Complex 1)Originally identified in mice as blood cell antigens by R.A. Gorer and G.D. Snell in 1930s, and defined on the basis of tissue graft rejection - 1980 Nobel prize awarded to Snell. 2)Work by Rolf Zinkernagel and Peter Doherty in the 1970s revealed that it is the complex of MHC molecule plus antigen that is recognized by T cells (MHC restriction of T cell responses) - 1996 Nobel Prize 3)Two classes of MHC molecule: Class I (single MHC chain + 2-microglobulin) and Class II ( chain plus chain) - more Ig-superfamily members (Ig-C domains) Dr.T.V.Rao MD2

3 Major Histocompatibility complex (MHC) The Major Histocompatibility complex (MHC) is a large genomic region or gene family found in most vertebrates. It is the most gene-dense region of the mammalian genome and plays an important role in the immune system, autoimmunity, and reproductive success. Dr.T.V.Rao MD3

4 Major Histocompatibility Complex Definition A group of genes that code for cell- surface Histocompatibility antigens and are the principal determinants of tissue type and transplant compatibility. They are the most diverse genes in humans and are used to determine if a sample of DNA comes from a specific person. Dr.T.V.Rao MD4

5 Genes Of MHC Organized In 3 Classes –Class I MHC genes Glycoproteins expressed on all nucleated cells Major function to present processed Ags to T C –Class II MHC genes Glycoproteins expressed on M, B-cells, DCs Major function to present processed Ags to T H –Class III MHC genes Products that include secreted proteins that have immune functions. Ex. Complement system, inflammatory molecules MHC

6 Basis of MHC system In man and mouse, as in most species, each class of MHC is represented by more than one locus( polygeny), in man these are called HLA for Human Leucocyte Antigen. The class I loci are HLA-A,-B and -C and the class II loci HLA- DR, -DQ and -DP. All the MHC genes map within a single region of the chromosome (hence the term Complex); the physical map of the MHC of man and mouse has been determined by cloning, mapping and sequencing. Dr.T.V.Rao MD6

7 Class I MHC Genes Found In Regions A, B and C In Humans (K and D In Mice) Class II MHC Genes Found In Regions DR, DP and DQ (IA and IE In Mice) Class I and Class II MHC Share Structural Features –Both involved in APC Class III MHC Have No Structural Similarity To Class I and II –Ex. TNF, heat shock proteins, complement components Class I, II and III MHC

8 Composition of Class I Molecules Class I molecules are composed of two polypeptide chains; one encoded by the BCA region and another (ß2-microglobulin) that is encoded elsewhere. The MHC-encoded polypeptide is about 350 amino acids long and glycosylated, giving a total molecular weight of about 45 kDa. This polypeptide folds into three separate domains called alpha-1, alpha-2 and alpha-3. ß2-microglobulin is a 12 kDa polypeptide that is non-covalently associated with the alpha-3 domain. Dr.T.V.Rao MD8

9 Class II molecules MHC (major Histocompatability complex) Class II molecules are found only on a few specialized cell types, including macrophages, dendritic cells and B cells, all of which are professional antigen-presenting cells (APCs). Dr.T.V.Rao MD9

10 Humans are very Diversified MHC Plays a Great Role The loci which specify MHCs are polymorphic. Many alleles may exist at a locus: HLA A locus has ~60 alleles HLA B locus ~110 alleles HLA C locus ~40 alleles The high level of allelism creates diversity within a species ( thus restricting allografting ) but does not produce diversity within an individual Dr.T.V.Rao MD10

11 What is polygenecity? Humans have DP, DQ, and DR regions specifying and chains of MHC-II. Why are these called regions?

12 MHC Molecules Control the Immune response The Major Histocompatibility Complex (MHC) is a set of molecules displayed on cell surfaces that are responsible for lymphocyte recognition and "antigen presentation". The MHC molecules control the immune response through recognition of "self" and "non-self" and, consequently, serve as targets in transplantation rejection Dr.T.V.Rao MD12

13 Peptide Binding to MHC Molecules: Class I vs. II Class IClass II Generated by proteasome (cytosol) Generated in endosomes/lysosomes Transported to ER by TAP1/2 Bind in specialized vessicles (MIIC) Restricted length, 8-9 residues Any length, extend from MHC Binding energy from N, C termini Binding energy from backbone Anchor residues fill specific pockets Dr.T.V.Rao MD13

14 MHC- I MHC-II MHC-I Heavy chain (alpha) and microglobulin (beta two) Heavy is 45 kilodaltons, has three domains + a transmembrane component (40 aa) + a cyto- plasmic tail (30 aa) The three alpha domains are called: 1, 2, & 3 1 and 2 interact to present processed Ag Process Ag is optimally a nonomer MHC-II An alpha and beta chain, 33 kDA and 28 kDa, respecitvely. Chains are non-covalently associated. Each chain has two domains. 1- 1 interact to present processed Ag Processed Ag is optimally 13-18 aa 2 & 2 are part of immunoglobulin super family Microglobulin (12 kDa) associates non-covalently with 3 Microglobulin and 3 are part of immunoglobulin superfamily Microglobulin is the only member of the superfamily that does not have a component linking it to a membrane

15 The Major Histocompatibility Complex 1)MHC Class I and Class II genes are encoded in a large (>4 Mb, >200 genes) tightly linked gene cluster: the MHC 2)The MHC is similarly organized in mice (Ch17) and humans (Ch6) - syntenic 3)Known in humans as HLA (human leukocyte antigen) genes; in mouse as H-2 (histocompatibility group 2) genes 4)Genes are highly polymorphic (many alleles) 5)Class I: HLA-A, -B, -C (human); H-2K, -2D, -2L (mouse) 6)Class II: HLA-DP, -DQ, -DR (human), I-A, I-E (mouse) Dr.T.V.Rao MD15

16 Human Human MHC class I: HLA-A, -B, -C MHC class II: HLA-DR, -DP, -DQMouse MHC class I: H2-K, -D, -L MHC class II H2-A, -E (I-A, I-E) 2 -microglobulin is located on a different chromosome. Dr.T.V.Rao MD16

17

18 MHC is represented … In man and mouse, as in most species, each class of MHC is represented by more than one locus(polygeny), in man these are called HLA for Human Leucocyte Antigen. The class I loci are HLA-A,-B and -C and the class II loci HLA-DR, - DQ and -DP. All the MHC genes map within a single region of the chromosome (hence the term Complex); the physical map of the MHC of man and mouse has been determined by cloning, mapping and sequencing. Dr.T.V.Rao MD18

19 Class I and II MHC Dr.T.V.Rao MD19

20 MHC- I & MHC-II Dr.T.V.Rao MD20

21 Dr.T.V.Rao MD21

22 Several Hundred Allelic Variants Have Been Identified In Humans However, up to 6 MHC I And 12 MHC II Molecules Are Expressed In An Individual Enormous Number Of Peptides Needs To Be Presented Using These MHC Molecules To Achieve This Task MHC Molecules Are Not Very Specific For Peptides (Unlike TCR and BCR) Promiscuous Binding Occurs –A peptide can bind a number of MHC –An MHC molecule can bind numerous peptides Class I And II Specificity

23 MHC Is One Of The Most Polymorphic Complexes Known Alleles Can Differ Up To 20 a/a Class I Alleles In Humans: 240 A, 470 B, 110 C Class II Alleles In Humans: HLA-DR 350, 2 ! HLA-DR – genes vary from 2-9 in different individuals!!!, – 1 gene ( can combine with all products increasing number of APC molecules) DP (2, 2 ) and DQ (2, 3 ) Class I And II Diversity And Polymorphism

24 MHC I and II belong to Immunoglobulin Supergene Family The Class I and Class II MHC molecules belong to a group of molecules known as the Immunoglobulin Supergene Family, which includes immunoglobulin's, T- cell receptors, CD4, CD8, and others Dr.T.V.Rao MD24

25 MHC location on Chromosome 6 major Histocompatibility complexThe major Histocompatibility complex is encoded by several genes located on human chromosome 6. Class I molecules are encoded by the BCA region while class II molecules are encoded by the D region. A region between these two on chromosome 6 encodes class III molecules, including some complement components. Dr.T.V.Rao MD25

26 Expression Is Regulated By Many Cytokines –IFN, IFN, IFN and TNF Increase MHC expression Transcription Factors That Increase MHC gene Expression –CIITA (Trans activator), RFX (Trans activator) Some Viruses Decrease MHC Expression –CMV, HBV, Ad12 Reduction Of MHC May Allow For Immune System Evasion MHC Expression

27 MHC system important in Rejection of Transplants Gene products encoded in the Major Histocompatibility Complex (MHC) were first identified as being important in rejection of transplanted tissues. Furthermore, genes in the MHC were found to be highly polymorphic (i.e. in the population there were many different allelic forms of the genes) Dr.T.V.Rao MD27

28 Class I MHC proteins Class I MHC proteins (found on all nucleated cell surfaces) present antigens to cytotoxic T lymphocytes (CTLs). Most CTLs possess both T-cell receptors (TCR) and CD8 molecules On their surfaces. These TCRs are able to recognize peptides when they are expressed in complexes with MHC Class I molecules. For the TCR to bind a peptide-MHC complex two conditions must be met. Firstly, the TCR must have a structure which allows it to bind the peptide-MHC complex. Secondly, the accessory molecule CD8, must bind to the alpha-3 domain of the MHC Class I molecule. Due to genetic recombination events each CTL expresses a unique TCR which only binds a specific MHC-peptide complex Dr.T.V.Rao MD28

29 Class I MHC molecules Class I MHC molecules are composed of two polypeptide chains, a long α chain and a short β chain called β2- microglobulin (figure 2). The α chain has four regions. First, a cytoplasmic region, containing sites for phosphorylation and binding to cytoskeletal elements Dr.T.V.Rao MD29

30 Class II MHC molecules Class II MHC molecules are composed of two polypeptide chains an α and a β chain of approximately equal length (Figure 6). Both chains have four regions: first, a cytoplasmic region containing sites for phosphorylation and binding to cytoskeletal elements; Dr.T.V.Rao MD30

31 MHC II are Complex in Organization Within the MHC there are 5 loci that encode class II molecules, each of which contains a gene for an α chain and at least one gene for a β chain. The loci are designated as HLA-DP, HLA –DQ, HLA- DR, HLA-DM, and HLA- DO. Among these, HLA- DP, HLA –DQ, and HLA- DR are the most important and are most polymorphic.. Dr.T.V.Rao MD31

32 MHC is highly polymorphic The MHC is highly polymorphic. There are a large number of genetic variants (alleles) at each genetic locus. Crucially many of these alleles are represented at significant frequency (> 1%) in the population, and in addition the alleles generally differ from one another by many (up to 30) amino acid substitutions. For example in humans there are more than 200 alleles described at some MHC loci. Such a remarkable degree of polymorphism implies a selective pressure to establish and maintain it. Dr.T.V.Rao MD32

33 MHC Polymorphism 1)MHC Class I and Class II molecules have many alleles (point mutations, gene conversion, gene recombination) 2)Diversity ensures that a wide range of peptides can be presented within the population (even if a much more limited set is presented by any individual) 3)For Class II, both and chains are polymorphic (except DR in humans and E in mice), adding more diversity 1)Collection of Class I + Class II alleles on one chromosome is called the haplotype 4)MHC molecules are expressed co-dominantly: alleles from both chromosomes are expressed in each cell Dr.T.V.Rao MD33

34 MHC Polymorphism 1)MHC Class I and Class II molecules have many alleles 2)Diversity ensures that a wide range of peptides can be presented within the population (even if a much more limited set is presented by any individual) 3)For Class II, both and chains are polymorphic (except DR in humans and E in mice), adding more diversity Dr.T.V.Rao MD34

35 Inheritance Of HLA Haplotypes

36 MHC Polymorphism 4)Collection of Class I + Class II alleles on one chromosome is called the haplotype 5)MHC molecules are expressed co- dominantly: alleles from both chromosomes are expressed in each cell Dr.T.V.Rao MD36

37 Biological role of the MHC The products of the MHC play a fundamental role in regulating immune responses. T cells must recognise antigen as a complex with MHC molecules. This requires antigen to be processed by unfolding and proteolytic digestion before it complexes with the MHC molecule Dr.T.V.Rao MD37

38 Biological role of the MHC Once formed the complex of antigenic peptide and MHC are generally very stable (half life ~ 24hrs). Thus the biological role of MHC proteins is to bind small peptides and to "present" these at the cell surface for the inspection of T cell antigen receptors. Dr.T.V.Rao MD38

39 MHC-Linked Diseases Defects in MHC gene expression lead to immunodeficiencies (MHC molecules are required for both T cell development and activation) Some MHC alleles are associated with susceptibility or resistance to autoimmune diseases Dr.T.V.Rao MD39

40 MHC-Linked Immunodeficiencies Bare Lymphocyte Syndromes lead to loss of MHC molecule expression : Defects in TAP genes prevent MHC Class I protein surface expression (even though MHC proteins are normal), so no CD8 + T cells - surprisingly mild immunodeficiency (respiratory and skin infections) Defects in TFs controlling Class II gene expression (CIITA, RFXANK, RFX5, RFXAP) block CD4+ T cell development - result in SCID (severe combined immunodeficiency) Dr.T.V.Rao MD40

41

42 Programme Created by Dr.T.V.Rao MD for Medical Students in the Developing WorldProgramme Created by Dr.T.V.Rao MD for Medical Students in the Developing World Email doctortvrao@gmail.comdoctortvrao@gmail.com Dr.T.V.Rao MD42


Download ppt "MAJOR HISTOCOMPATABILITY COMPLEX Dr.T.V.Rao MD 1."

Similar presentations


Ads by Google