Presentation is loading. Please wait.

Presentation is loading. Please wait.

DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration

Similar presentations


Presentation on theme: "DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration"— Presentation transcript:

1 DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration (+49) 069 /

2 The MVD – required performances Required performances (SIS-100) Radiation tolerance > n eq /cm 2 & >3 MRad Read-out speed> 30 kframes/s Intrinsic resolution < 5 µm Operation in vacuum Light support and cooling Material budget ~ 0.3 % X 0 CBM-MVD will: - improve secondary vertex resolution - host highly granular silicon pixel sensors featuring fast read-out, excellent spatial resolution and robustness to radiation environment. See P.Senger introduction

3 Sensor development Front-End Electronics Support & cooling M.Winter Radiation tolerance System integration J.Stroth Main challenges: Provide fast and radiation tolerant sensor featuring low material budget Develop sensor readout system capable to handle high data rates Provide cooling and support with low material budget

4 Material budget: ~ 2.45 % X 0 Sensor: MIMOSA-20 ~200 frames/s few n eq /cm 2 & ~300 kRad 750µm thick Cooling & support: TPG+RVC foam Material budget: ~ 0.3 % X 0 Sensor: MIMOSA-26 AHR ~10 kframes/s ~10 13 n eq /cm 2 & >300 kRad 50µm thick Readout CP/digital/high data rates Cooling & support: CVD diamond Readout Serial/analog...will meet all requirements Sensor: MIMOSIS-1 (diff. geometry) Readout speed ~30 kframes/s Radiation tol. >10 13 n eq /cm 2 & >3 MRad Demonstrator Prototype Final ½ of 1 st station 4 sensors

5 Main features: -CP architecture -in pixel amplification -comparator for each column -0 suppression logic -pitch: 18.4 μ m 0.7 million pixels MIMOSA-26 AHR 0.35µm process High Resistivity (HR) EPI (400 Ω· cm) Extensively studied at IKF: [1] M.Deveaux Radiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layer, accepted for publication in Journal Of Instrumentation 2011 Achieved performances MIMOSA-26 AHR (2009) [1] Design goals (SIS-100) MIMOSIS-1 (~2015) Radiation tolerance~10 13 n eq /cm 2 & >300 kRad~10 13 n eq /cm 2 & >3 MRad Read-out speed~10 kframes/s>30 kframes/s Intrinsic resolution~3.5 µm< 5 µm Material budget~ 0.05 % X 0 (50µm Si) CMOS processes with smaller feature size (0.18µm) Sensor geometry – column length 21.2 x 10.6 mm µm pixel pitch

6 FEB CB RCB PEXOR PC Driver board Clk Start Reset JTAG 5 x 800MBit/s multiwire LVDS 5 x 1GBit/s Optical Fibers 5 x 300MBit/s Optical Fibers Data reduction Time stamping Slow control Fast control LVDS to Optical conversion Powering LVDS drivers Current & temperature monitoring Signal distribution Filtering CBM DAQ FEB – F ront E nd B oard // CB – C onverter B oard // Powering Latchup detection Current & temperature monitoring LVDS to Optical conversion RCB – R eadout C ontroller B oard PCI optical receiver vacuum multiwire LVDS 1 optical link Data reduction Time stamping Slow control Fast control Data concentrator

7 Slow control Main objectives: On-line current monitoring Latch-up detection & handling (based on STAR solution) Possibility to use radiation tolerant components (CERN)

8 Material budget ~2.45% X 0 Material budget ~0.35% X 0 Sensors thinned down to 50µm Carrier Heat Sink Cooling Demonstrator Prototype Cooling & carrier Heat Sink TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon Sensor Cu heat sink CVDD 300µm R/O Flex Cable R/O 750µm thick sensors Sensor Flex Cable Cu heat sinkRVC TPG R/O * * +20C,

9 Sensor Cu heat sink CVDD 300µm R/O Flex Cable R/O

10 SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope) Radiation tolerance ? Reliability ? Thermal cycles ? Real material budget ? IMEC (Belgium) + IKF Frankfurt + IPHC Strasbourg (sensors)

11 Digital Microscope Keyence VHX-600Keyence VHX-600 Probe Station PA200 (Suss-Microtec) Thermal imaging system (VarioCAM HiRes 640) mBar vacuum chamber

12 1)The concept of the MVD read-out is defined 2)The hardware components for MVD prototye have been delivered to the IKF 3)Assembly and debugging in progress 4)Software development is ongoing 5)Lab tests to be performed 6)In parallel – software developments Challanges: 1)Deliver MIMOSIS-1 – with required radiation tolerance & readout speed for MVD 2)Most optimum read-out 3)Connectivity 4)Second station – large area sensors…

13 CBM-MVD Collaboration members: Samir Amar-Youcef, Norbert Bialas, Michael Deveaux, Dennis Doering, Melissa Domachowski, Christina Dritsa, Horst Düring, Ingo Fröhling, Tetyana Galatyuk, Michal Koziel, Jan Michel, Boris Milanovic, Christian Müntz, Bertram Neumann, Paul Scharrer, Christoph Schrader, Selim Seddiki, Joachim Stroth, Tobias Tischler, Christian Trageser, Bernhard Wiedemann Jérome Baudot, Grégory Bertolone, Nathalie Chon-Sen, Gilles Claus, Claude Colledani, Andrei Dorokhov, Wojchiech Dulinski, Marie Gelin-Galivel, Mathieu Goffe, Abdelkader Himmi, Christine Hu-Guo, Kimmo Jaaskelainen, Frédéric Morel, Fouad Rami, Mathieu Specht, Isabelle Valin, Marc Winter


Download ppt "DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration"

Similar presentations


Ads by Google