Download presentation

Presentation is loading. Please wait.

Published byDiamond Bardwell Modified over 3 years ago

1
Instantly Decodable Network Codes for Real-Time Applications Anh Le, Arash Tehrani, Alex Dimakis, Athina Markopoulou UC Irvine, USC, UT Austin Presented by Marios Gatzianas

2
Real-time applications that use wireless broadcast: Live video streaming Multiplayer games Unique characteristics: Strict deadlines Loss tolerant 2 Problem: Retransmissions in the presence of loss Real-Time Applications with Wireless Broadcast

3
Broadcast Loss Recovery for Real-Time Applications Strict deadlines: Instantly decodable network codes (IDNC) Loss tolerant: We formulate Real-Time IDNC 3 What is a coded packet that is instantly decodable and innovative to the maximum number of users?

4
Related Work Instantly decodable, opportunistic codes [Katti 08] [Keller 08] [Sadeghi 09] [Athanasiadou 12] IDNC focuses on minimizing the completion delay [Sorour 10, 11, 12] Index coding and data exchange problems [Birk 06] [El Rouayheb 10] 4

5
Our Contributions 5 We show Real-Time IDNC is NP-Hard Equivalent to finding a Max Clique in an IDNC graph Provide a reduction from Exact Cover by 3-Sets Analysis of instances with random loss probabilities Provide a polynomial time solution for Random Max Clique and Random Real-Time IDNC

6
Outline 6 1.Real-Time IDNC Equivalence to Max Clique NP-Hardness 2.Random Real-Time IDNC Optimal coded packet (clique number) Coding algorithm

7
Real-Time IDNC: Problem Formulation -A set of m packets, broadcast by a source -n users, interested in all packets -Each user received only a subset of packets -To recover loss: What is a coded packet that is instantly decodable and innovative to the maximum number of users? 7

8
Real-Time IDNC: Example -6 packets: p 1, …, p 6 -3 users: u 1, u 2, u 3 p 1 p 2 p 3 p 4 p 5 p 6 u 1 has p 1, p 2 0 0 1 1 1 1 u 2 has p 3, p 5 1 1 0 1 0 1 u 3 has p 3, p 6 1 1 0 1 1 0 p 5 + p 6 is instantly decodable and innovative to u 2 and u 3 p 2 + p 3 is instantly decodable and innovative to all users 8

9
Mapping: Real-Time IDNC to Max Clique 9 Real-Time IDNC Max Clique in IDNC graph

10
Real-Time IDNC is NP-Hard 10 Real-Time IDNC Max Clique IQP NP-Hard IQP is NP-Hard: reduction from Exact Cover by 3-Sets Real-Time IDNC Integer Quadratic Programming (IQP)

11
Outline 11 1.Real-Time IDNC Equivalence to Max Clique NP-Hardness 2.Random Real-Time IDNC Optimal coded packet (clique number) Coding algorithm

12
Random Real-Time IDNC 12 Setup: iid loss probability p a ij = 1 with probability p Analysis sketch: Fix a set of j columns Define a good row as having one 1 among these j columns o A row is good with probability f(j) = j p (1-p) j-1 o Number of good rows has Binomial distribution: Bin(n, f(j))

13
Analysis of Random Real-Time IDNC 13 Lemma 5 (sketch): The size of the maximum clique that touches j columns is close to the number of good rows w.r.t. these j columns Lemma 6 (sketch): The size of the maximum clique that touches j columns concentrates around n f(j) Theorem 7 (sketch): Maximum clique, that touches any j columns, has size concentrating around n f(j)

14
Analysis of Random Real-Time IDNC (cont.) 14 Corollary 8: The maximum clique touches j* columns, where j* = argmax f(j) Observations: j* is a constant for a fixed loss rate p j* increases as loss rate p decreases (more packets should be coded together)

15
Max-Clique Algorithm 15 Observations: The maximum clique concentrates around n f(j*) j* is a constant for a fixed loss rate p Polynomial-time algorithm to find the maximum clique and optimal coded packet: Examine all cliques that touch j columns for all j δ-close to j* Complexity: O (n m j* + δ )

16
Evaluation Results 16 Simulation with random loss rate (20 users, 20 packets) Max-Clique outperforms all other algorithms at any loss rate

17
Conclusion 17 We formulate Real-Time IDNC Equivalent to Max Clique in IDNC graph NP-Hard proof Analysis of Random Real-Time IDNC Polynomial time solution to find max clique and optimal coded packet

Similar presentations

OK

SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION

SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on city life and village life Download ppt on turbo generator repair Hindi ppt on stress management Seminar ppt on computer science topics Ppt on 3-phase squirrel cage induction motor Ppt on if clauses in english grammar Ppt on railway track laying Ppt on argand plane Ppt on campus recruitment system process Ppt on free space optical communication link