Download presentation

Presentation is loading. Please wait.

Published byMiguel Doherty Modified over 4 years ago

1
1/15 Agnostically learning halfspaces FOCS 2005

2
2/15 Set X, F class of functions f: X! {0,1}. Efficient Agnostic Learner w.h.p. h: X! {0,1} poly(1/ ) samples P [f*(x) y] P [h(x) y] · opt + L. Sellie Agnostic learning arbitrary arbitrary dist. over (x,y) 2 X £ {0,1} f* = argmin f 2F P [f(x) y]

3
3/15 n n nn Set X n µ R n, F n class of functions f: X n ! {0,1}. Efficient Agnostic Learner w.h.p. n h: X n ! {0,1} n, poly(n,1/ ) samples Agnostic learning n P [f*(x) y] P [h(x) y] · opt + arbitrary arbitrary dist. over (x,y) 2 X £ {0,1} f* = argmin f 2F P [f(x) y] L. Sellie

4
4/15 arbitrary arbitrary dist. over (x,y) 2 X £ {0,1} f* = argmin f 2F P [f(x) y] n n nn Set X n µ R n, F n class of functions f: X n ! {0,1}. Efficient Agnostic Learner w.h.p. n h: X n ! {0,1} n, poly(n,1/ ) samples Agnostic learning n P [f*(x) y] P [h(x) y] · opt + in PAC model, P [f*(x) y] = 0 L. Sellie

5
5/15 F n = { f(x)= I (w ¢ x ¸ ) | w 2 R n, 2 R }. h: R n ! {0,1} P [h(x) y] · opt + Agnostic learning of halfspaces f* argmin f 2F P [f(x) y] h P [f*(x) y]

6
6/15 F n = { f(x)= I (w ¢ x ¸ ) | w 2 R n, 2 R }. h: R n ! {0,1} P [h(x) y] · opt + Agnostic learning of halfspaces f*h Special case: junctions, e.g., f(x) = x 1 Ç x 3 = I (x 1 + x 3 ¸ 1) Efficient agnostic-learn junctions ) PAC-learn DNF NP-hard to properly agnostic learn P [f*(x) y]

7
7/15 F n = { f(x)= I( w ¢ x ¸ ) | w 2 R n, 2 R }. h: R n ! {0,1} P [h(x) y] · opt + Agnostic learning of halfspaces f* PAC learning halfspaces solved by LP P [f*(x) y]

8
8/15 F n = { f(x)= I (w ¢ x ¸ ) | w 2 R n, 2 R }. h: R n ! {0,1} P [h(x) y] · opt + Agnostic learning of halfspaces hf* PAC learning halfspaces with indep./random noise solved by: P [f*(x) y]

9
9/15 F n = { f(x)= I (w ¢ x ¸ ) | w 2 R n, 2 R }. h: R n ! {0,1} n min f 2F n P [f(x) y] P [h(x) y] · opt + Agnostic learning of halfspaces f*h Equivalently, f*=truth with adversarial noise

10
10/15 Theorem 1 : Our alg. outputs h: R n ! {0,1} with P [h(x) y] · opt +, in time poly(n) ( 8 const ), x 2 R n as long as draws x 2 R n from: Log-concave distribution, e.g.: uniform over convex set, exponential e -|x|, normal Uniform over {-1,1} n or S n-1 = { x 2 R n | |x|=1 } … n O ( -4 ) (w.h.p.)

11
11/15 1. L 1 polynomial regression algorithm Given: d>0, (x 1,y 1 ),…,(x m,y m ) 2 R n £ {0,1} Find deg-d p(x) to minimize: 2 [0,1]h(x) = I (p(x) ¸ ) Pick 2 [0,1] at random, output h(x) = I (p(x) ¸ ) time n O(d) multivariate x y ¼ minimize deg(p) · d E [ |p(x)-y| ] time n O(d) 2. Low-degree Fourier algorithm of Chose, where h(x) = I (p(x) ¸ ½) Output h(x) = I (p(x) ¸ ½) ¼ minimize deg(p) · d E [ (p(x)-y) 2 ] (requires x uniform from {-1,1} n )

12
12/15 time n O(d) 1. L 1 polynomial regression algorithm Given: d>0, (x 1,y 1 ),…,(x m,y m ) 2 R n £ {0,1} Find deg-d p(x) to minimize: 2 [0,1]h(x) = I (p(x) ¸ ) Pick 2 [0,1] at random, output h(x) = I (p(x) ¸ ) multivariate x y 2. Low-degree Fourier algorithm of ¼ minimize deg(p) · d E [ |p(x)-y| ] Chose, where h(x) = I (p(x) ¸ ½) Output h(x) = I (p(x) ¸ ½) ¼ minimize deg(p) · d E [ (p(x)-y) 2 ] (requires x uniform from {-1,1} n ) lemma: algs error · opt + min deg(q) · d E [ |f*(x)-q(x)| ] lemma: algs error · 8(opt + min deg(q) · d E [(f*(x)-q(x)) 2 ]) ·p lemma of : algs error · ½ - (½ - opt) 2 + & Sellie

13
13/15 Approx degree is dimension-free for halfspaces Useful properties of logconcave dists: projection is logconcave, …, q(x) ¼ I (x ¸ 0) degree d=10 q(w ¢ x) ¼ I (w ¢ x ¸ 0) degree d=10

14
14/15 Approximating I(x ¸ ) (1 dimension) Bound min deg(q) · d E [(q(x) – I (x ¸ )) 2 ] Continuous distributions: orthogonal polynomials Normal: Hermite polynomials Logconcave (e -|x| /2 suffices): new polynomials Uniform on sphere: Gegenbauer polynomials Uniform on hypercube: Fourier = E [f(x)g(x)] Hey, Ive used Hermite (pronounced air-meet) polynomials many times.

15
15/15 Theorem 2: junctions (e.g., x 1 Æ x 11 Æ x 17 ) For arbitrary over {0,1} n £ {0,1} the polynomial regression algorithm with d=O(n 1/2 log( 1/ )) (time -O*(n ½ ) ) outputs h with P [h(x) y] · opt + Follows from previous lemmas +

16
16/15 How far can we get in poly(n, 1/ ) time? Assume draws x uniform from: S n-1 = { x 2 R n | |x|=1 } Perceptron algorithm: error · O( p n) opt + We show: simple averaging algorithm of achieves error · O( log(1/opt) ) opt + Assume (x,y) = (1- ) (x,f*(x)) + (arbitrary (x,y)): We get: error · O( n 1/4 log(n/ ) ) + using Rankins second bound uniform 2 S n-1

17
17/15 Half-space conclusions & future work L 1 poly reg: natural extension of Fourier learning Works for non-uniform/arbitrary distributions Tolerates agnostic noise Works on both continuous and discrete problems Future work Work on all distributions (not just logconcave/uniform {-1,1} n ) opt + using poly(n,1/ ) algorithm (we have poly(n) for fixed, and trivial: poly( ) for fixed n) Other interesting classes of functions

Similar presentations

OK

MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.

MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on writing a persuasive essay Ppt on self awareness in nursing A ppt on thermal power plant Ppt on mass energy equation Ppt on kingdom plantae for class 9 Ppt on water resources engineering Ppt on liquid crystal display Ppt on 9/11 conspiracy proof Ppt on depth first search algorithm example Ppt on energy generation from busy road