Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hiromi Iinuma (KEK) for New collaboration New collaboration 1. Motivation and goal 2. Outline of new experiment 3. Summary.

Similar presentations


Presentation on theme: "Hiromi Iinuma (KEK) for New collaboration New collaboration 1. Motivation and goal 2. Outline of new experiment 3. Summary."— Presentation transcript:

1 Hiromi Iinuma (KEK) for New collaboration New collaboration 1. Motivation and goal 2. Outline of new experiment 3. Summary NEW APPROACH TO THE MUON g 2 AND EDM EXPERIMENT AT J-PARC

2 2 Motivation for Muon g-2 and EDM Latest experimental result PRD73, (2006) Standard model Recent theoretical work HLMNT10(preliminary) 3.2 (Tau2010) 2010/9/ Electric Dipole Moment Scaling from electron EDM EDM~10 25 e.cm A recent theoretical work EDM = ~ e.cm ? G. Hiller et al. hep-ph/ v1 (2010, Aug.) EDM upper limit: e.cm (95% C.L.) PRD 80, (2009) Go beyond at least order of magnitude!

3 How to measure a =(g 2)/2 and EDM? Measure the muon precession frequency in the uniform magnetic field B 2010/9/28 3 < 0.1 ppm Non-zero EDM case Measure two frequency vectors separately!! B

4 Magic momentum + beam cancels focusing electric field term B=1.45 Tesla diameter 14m 45m round 12 magnet yoke pieces 4 EDM=0 Great E821 and beyond the horizon e+e+ 2 / a =4.4 sec 150 (g-2) Cycles in Positron Time Spectrum! PRD73, (2006) E e+ > 1.8 GeV calorimetry 2010/9/28 More muons! Statistics uncertainty < 0.1 ppm ( 0.46ppm) For the better B/B <0.1ppm ( 0.17ppm); Compact storage ring to reduce the field volume For the better a / a <0.1 ppm ( 0.21ppm); Ultra-cold muon beam, even off-magic momentum High granularity detector Measure two frequency vectors separately for g 2 and EDM measurements Independent experimental approach provides independent systematic studies for even clearer physics understanding!!

5 High Intensity Muon Beam in JAPAN! 5 J-PARC Tokyo KEK 2010/9/28 Birds eye photo in Feb P, 30GeV -beam P, 3GeV Thursday 10:00 Prof. N. Saito

6 6 Graphite target (20 mm) 3 GeV proton beam ( 333 uA) Surface muon beam (28 MeV/c, 4x10 8 /s) Muonium Production (300 K ~ 25 meV 2.3 keV/c) 2010/9/28 Proton beam (3 GeV, 1MW, 25 Hz) Muon Linac (300 MeV/c) (28 MeV/c) Step1: Ultra-Cold + Source and LINAC Laser (2.3 keV/c)

7 Graphite target (20 mm) 3 GeV proton beam ( 333 uA) Surface muon beam (28 MeV/c, 4x10 8 /s) Muonium Production (300 K ~ 25 meV 2.3 keV/c) Super Precision Magnetic Field (3T, ~1ppm local precision) 2010/9/ m diameter + beam =3 and B=3 [T] Step2: Injection & storage Step3: Detect decay e + (note: 14 m for E821) 7

8 2010/9/28 8 Expected precession signal from J-PARC within a Snowmass year beam time ! E e > 200MeV Default 50% pol. Study for high pol. Is ongoing.

9 2010/9/28 Example EDM wiggle, if EDM= e.cm example 9 Expected sensitivity for EDM would be better than e.cm

10 R&D items are running! 2010/9/28 10 Step2: Injection & storage Step3: Detect decay e + Step1: Ultra-cold + source and LINAC Test experiments to search the best Mu production target are ongoing at TRIUMF and RAL ! Hi Power Ly- Laser System R&D LINAC R&D Setup spin dependent muon-decay including EDM term in GEANT4 Positron detector design Hi-rate Si Tracker Belle sensor with SiLC based FEE See next few pages

11 3D-spiral injection /9/28 11 Back to Step2: Injection & storage Technical difficulties: 3T is too high to cancel fringe field by inflector, Required kick angle (~60 mrad) is too big. Concept is simple but real design ?

12 Storage ring magnet (ver.0 design) 2010/9/28 12 Cylindrical return yoke (Iron) Upper end cap (Iron) Pole tip (Iron) Tunnel for + beam Upper half Super conductive Main coils 3T super conductive solenoid magnet Uniformity in the beam storage region<0.1ppm Careful design of fringe field for stable beam injection 1.8m 4.6m Inner radius 1.6m 1ppm level at storage volume is achieved Apply MRI technology!

13 Storage ring magnet (ver.0 design) 2010/9/ m 4.6m + beam orbit diameter 0.66m 2.1m round (cyclotron period=7.4 nsec) 1.3 tesla super conductive solenoid magnet 2.Uniformity in the beam storage region<0.1ppm 3.Careful design of fringe field for stable beam injection Upper half

14 2010/9/28 14 Beam acceptance study is ongoing Start + y <0 Solenoid axis y>0 y<0 y Beam acceptance

15 Coil Vertical kicker (ver.0) 2010/9/28 15 Helmholtz type Br(t)=B peak sin( t) Apply radial magnetic field to reduce beam vertical momentum Prototype kicker is being designed for test. ±10cm STOP!

16 Summary A new muon g 2 and EDM experiment at J PARC: Off-magic momentum Ultra-cold muon beam + compact g-2 ring Independent experimental approach provides independent systematic uncertainty Complementary to New g Saturday 10:00 Prof. B. Lee Roberts Active R&D efforts are ongoing! My next step: Verification test for injection + kicker system /9/28

17 J-PARC g-2/EDM collaboration 71 members (…still evolving) M. Aoki, P. Bakule, B. Bassalleck, G. Beer, A. Deshpande, S. Eidelman, D. E. Fields, M. Finger, M. Finger Jr., Y. Fujirawa, S. Hirota, H. Iinuma, M. Ikegami, K. Ishida, M. Iwasaki, T. Kakurai, T. Kamitani, Y. Kamiya, N. Kawamura, S. Komamiya, K. Koseki, Y. Kuno, O. Luchev, G. Marshall, M. Masuzawa, Y. Matsuda, T. Matsuzaki, T. Mibe, K. Midorikawa, S. Mihara, Y.Miyake, J. Murata, W.M. Morse, R. Muto, K. Nagamine, T. Naito, H. Nakayama, M. Naruki, H. Nishiguchi, M. Nio, D. Nomura, H. Noumi, T. Ogawa, T. Ogitsu, K. Ohishi, K. Oide, A. Olin, N. Saito, N.F. Saito, Y. Sakemi, K. Sasaki, O. Sasaki, A. Sato, Y. Semeritzidis, K. Shimomura, B. Shwartz, P. Strasser, R. Sugahara, K. Tanaka, N. Terunuma, D. Tomono, T.Toshito, K. Ueno, V. Vrba, S. Wada, A. Yamamoto, K. Yokoya, K. Yokoyama, Ma. Yoshida, M. H. Yoshida, and K. Yoshimura 18 Institutions Academy of Science, BNL, BINP, UC Riverside, Charles U., KEK, NIRS, UNM, Osaka U., RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TRIUMF, U. Victoria 6 countries Czech, USA, Russia, Japan, UK, Canada 17 Thank you! 2010/9/28

18 Backups 2010/9/28 18

19 Requirements for Kicker 19 Br(t)=B peak sin( t) = /T kick Field strength B peak = 1Gauss ~ 10 Gauss Time distribution T kick =150 nsec (c.f. 20 cyclotron periods) Spatial distribution 33cm±5mm in radial direction, 1% uniformity ±10cm in solenoid axis direction to reduce distortion o f beam bunch shape Minimal effect for positron detector 1.Quench protection 2.Space problem 3.Eddy currents on cryostat wall e + detector (Silicon tracker) 2010/9/28

20 /9/28 Kicker circuit and eddy current study Start DAQ R=60cm cryostat wall

21 2010/9/28 21 Br 0 5%5% 20% 2 deg. 0.8 deg. Small angle orbit requires smooth Br distribution Smooth Br provides easy requirements for beam and kicker Smaller angle orbit gets bigger integral field effect Need to decrease Tesla Injection orbit stability: Shallow vs. deep angle orbit

22 good field region weak magnetic focus ? 2010/9/28 22 Focus condition 00 :solenoid axis direction We have n=3E-5 3D field measurement is needed… If we require:

23 Field inside beam tunnel 2010/9/28 23 Inside tunnel Gauss Cross section1 Cross section2 Cross section3 Absolute field strength along the tunnel Cross- section1 Outside

24 2010/9/ cm Field vectors Cross section1 Cross section2 8cm Cross section3 50cm We are trying square and circle shapes

25 Field measurement =NMR frequency measurement Measure well better than Measure and well better than 0.1ppm Muonium hyper splitting experiment to improve Muonium hyper splitting experiment to improve (ongoing at J-PARC) 2010/9/28 25

26 26 K. Hagiwara et al., PLB 649 (2007) Dominant component~99% (e e ~73%) Dominant uncertainty a SM = QED QCD Weak T.Kinoshita, M.Nio Recent experimental data made big contributions (BaBar, KLOE….) Recent e e experimental data made big contributions (BaBar, KLOE….) Theoretical calculation K.Hagiwara D. Nomura 2010/9/28

27 27 K. Hagiwara et al., PLB 649 (2007) Nambu-Goldstone bosons exchange J. Prades, arXiv: v1 0,, is a known function (PRD ), M

28 BNL, FNAL, and J-PARC /9/28

29 Muon source 29 Requrements: times more muons, and Cooler muon than RAL 670 times higher surface muon per spill at J-PARC 2.4 x 10 4 /spill 1600 x 10 4 /spill (25 spill/sec) 670 times higher surface muon per spill at J-PARC 2.4 x 10 4 /spill 1600 x 10 4 /spill (25 spill/sec) 100 times intense laser 1 J 100 J 100 times intense laser 1 J 100 J Room temperature target (hot tangsten silica aerogel?) 2000K (15keV/c) 300K (2.3keV/c) Room temperature target (hot tangsten silica aerogel?) 2000K (15keV/c) 300K (2.3keV/c) 2010/9/28

30 g-2:Stored Energy / Cold Mass K. Sasaki, T. Ogitsu, et al. Not an extreme, but requires serious efforts Material : NbTi /Copper Cu/Sc ratio : 4 Central Field:3T Peak Field on Cable: 5.4 T Nominal current : 417 A Stored Energy : 23 MJ Inductance : H Total mass : 3.7 t Well within current Technology ! /9/28

31 g-2 silicon tracker Detector area 0.12 * number of vanes [m 2 ] 2.9 m 2 for 24 vanes Number of sensors 384 for 24 vanes Number of channels Assume 0.2 mm pitch 115k for 24 vanes* – *288k for multi-segments readout g-2 silicon tracker 576 mm 580 mm 2010/9/28 31

32 32 Silicon strip module front back Support DSSD sensors Readout chip 2010/9/28 32

33 Silicon sensor 33 Sensor type Double-sided SSD Chip size : ~12 cm x 6 cm Thickness: 320 um Readout: AC-couple Depletion voltage : 80 V Detector capacitance : ~100pF* Strip pitch : 200um* * to be determined by further studies. From Belle SVD page p-siden-side 2010/9/28

34 Spin equation (T-BMT equation + EDM) Our case: /9/28


Download ppt "Hiromi Iinuma (KEK) for New collaboration New collaboration 1. Motivation and goal 2. Outline of new experiment 3. Summary."

Similar presentations


Ads by Google