Presentation is loading. Please wait.

Presentation is loading. Please wait.

Science Case at ELI-Beamlines

Similar presentations

Presentation on theme: "Science Case at ELI-Beamlines"— Presentation transcript:

1 Science Case at ELI-Beamlines
UPOL 22/2/12 Projekt: Výzkum a vývoj femtosekundových laserových systému a pokročilých optických technologií (CZ.1.07/2.3.00/ ) Science Case at ELI-Beamlines Daniele Margarone ELI-Beamlines Project Institute of Physics of the Czech Academy of Science PALS Centre Prague, Czech Republic

2 Science Case at ELI-Beamlines
Research Program 1 Laser generating rep-rate ultrashort pulses & multi-PW peak powers Research Program 2 X-ray sources driven by rep-rate ultrashort laser pulses Research Program 3 Particle Acceleration by lasers Research Program 4 Applications in molecular, biomedical and material sciences Research Program 5 Laser plasma and high-energy-density physics Research Program 6 High-field physics and theory

3 ELI-Beamlines Scientific Team
RA1 Lasers B. Rus RA2-RA6 G. Korn RA2 X-ray sources driven by ultrashort laser pulses S. Sebban RA3 Particle acceleration by lasers D. Margarone RA4 Applications in molecular, biomedical, and material sciences L. Juha RA5 Plasma and high energy density physics J. Limpouch RA6 Exotic physics and theory K. Rohlena

4 Science Case at ELI-Beamlines
Protons, Ions, Electrons, X-rays and g-rays Unique features relativistic ultrashort and synchronized high-intensity particles, lasers and X-ray beams high repetition rate unprecedented energy range high brightness excellent shot-to-shot reproducibility (laser-diode and thin-disk technology) Potential applications, business and technology transfer accelerator science (new and compact approaches, e.g. Compact FEL) time-resolved pump-probe experiments (fusion plasmas, warm dense matter, laboratory astrophysics, etc.) medicine (hadrontherapy and tomography of tumors) bio-chemistry (fast transient dynamics) security (non-destructive material inspection)

5 Target Areas Potential future 3D diffractive X-ray imaging of complex molecules Potential future laser driven FEL/XFEL Potential future laser driven hadron-therapy

6 Proton/Ion Acceleration Electron Acc. & LUX/FEL/XFEL
RPA scheme TNSA scheme ion diagnostics nano/micro structured submicro-droplets H-enriched clusters/mass-limited double-layer RPA (laser-target optimization) - max. energy increase (H+/Cn+) - pencil ion beam - variable ion energy TNSA (ion beam handling) - ion beam transport - electromagnetic selection - magnetic lens focusing radiobiological dosimetry - dose absorption optimization - real-time monitoring - adapted treatment planning - biological cell irradiation laser-driven electron acceleration - self guiding (gas target) - external guiding (gas target) - solid targets LUX, FEL & XFEL neutrons: DD, DT, (p, n) and (g, n) - single-target scheme - catcher-target scheme g-rays from accelerated e- beams e-e+ pairs from: - accelerated e- beams (catcher target) - “hot electrons” in solid targets Shielding optimization Radiation damaging Proton/Ion Acceleration Advanced Targets Hadron Therapy Electron Acc. & LUX/FEL/XFEL Secondary Sources Radiation Protection RA3 Particle Acceleration

7 High energy density plasmas
3D proton beam probing X-ray probing optical interferometry Non linear effects - self focusing - filamentation - transient magnetic fields (astrophys.) - parametric instabilities Warm Dense Matter (WDM) Stopping power of protons/ions in: - plasmas - WDM probing of ultraintense electric fields in wakefield laser channeling in low density plasmas advanced targets Plasma Probing High energy density plasmas Underdense plasmas Fusion Schemes RA5 Plasma & High En. Dens. Phys.

8 Laser-driven x-rays: several approaches
K-alpha emission Harmonics (solid) Harmonics (gas) Probe laser Solid target Pump Laser K-alpha Prepulse Plasma based x-ray lasers X-rays from relativistic e-beams

9 Main limitations : tunability, polychromaticity, divergence
K-alpha emission : easy and ultrafast x-ray source - Monochromatic - Fully divergent - Duration 100 fs - KHz rep. rate - Flux : 1e9 ph/shot Main limitations : tunability, polychromaticity, divergence

10 Harmonics from solid target plasma

11 . Betatron radiation β Rc Radiated energy Velocity Acceleration
X-rays from relativistic e-beams Rc β . Electron X-rays from relativistic e-beams We need relativistic electrons undergoing oscillations

12 From projection images to (almost) 3d structures
3 D diffractive imaging using synchronized ELI x-ray pulses Timing synchronization of 30 fs should allow to go for µm samples diffraction Explosion happens over many ps (Hajdu et al.)

13 Single- particle diffraction imaging of biological particles without crystallization
Kirz,Nature Physics 2, (2006)

14 Bright fs sources for applications
Ablation Phase transitions Bio structures, damage Magnetism Atomic physics X-ray microscopy Plasma diagnostics Warm dense matter

15 Laser-driven Electron Acceleration
C. Joshi, Scientific America, 2006




19 Envisioned electron beams at ELI-Bamlines
50 J beamlines (10 Hz) Bubble regime (high divergence beam) Laser parameters: EL=50J, tL=25fs, f=23mm, a0=35 Plasma parameters: nP=1.8x1019cm-3 Electron beam parameters: Eel= 1.5 GeV, qel= 6.2 nC Blow-out regime/self-injection (pencil beam) Laser parameters: EL=50J, tL=72fs, f=33mm, a0=5 Plasma parameters: nP=5.3x1017cm-3, Lacc=5.6cm Electron beam parameters: Eel= 4.4 GeV, qel= 1.2 nC Blow-out regime/external-injection (pencil beam) Laser parameters: EL=50J, tL=134fs, f=60mm, a0=2 Plasma parameters: nP=6.3x1016cm-3, Lacc=8.8cm Electron beam parameters: Eel= 14.9 GeV, qel= 0.85 nC (?) 1.3 kJ beamlines (0.016 Hz) Blow-out regime/self-injection (ELI end-stage) Laser parameters: EL=1.3kJ, tL=215fs, f=97mm, a0=5 Plasma parameters: nP=6.1x1016cm-3, Lacc=1.5m Electron beam parameters: Eel= 39 GeV, qel= 3.4 nC Blow-out regime/external-injection Laser parameters: EL=1.3kJ, tL=395fs, f=178mm, a0=2 Plasma parameters: nP=7.1x1015cm-3, Lacc=22.9m !!! NO Electron beam parameters: Eel= 131 GeV, qel= 2.5 nC (?) Blow-out regime Laser parameters Plasma parameters Electron beam parameters Scaling laws: S. Gordienko and A. Pukhov, Phys. Plasmas 12 (2005) W. Lu et al., Phys. Rev.Spec.Top.-Accelerators and Beams 10 (2007) OSIRIS simulations: L. O. Silva, ELI Scientific Challenges, April

20 Laser-driven Ion Acceleration
Ep ~ I1/2 TNSA Photons Non relativistic protons C Vp ~0 Photons Vp ~C Ep ~ I RPA (at very high intensitíes, light pressure accelerates) Relativistic protons C

21 Ponderomotive Acceleration
TNSA TNSA (Target Normal Sheath Acceleration) high laser contrast (main/pedestal) short laser pulse (10s fs – few ps) still occurring when the pre-plasma is “localized” at the target front-side higher energy gain in metals (returning electron current for the recirculations of “hot electrons”). Ponderomotive Acceleration (Sweeping potential at the laser pulse front) low laser contrast (dense pre-plasma) long laser pulse (10s ps – ns) long pre-plasma length (100s mm – mm) high laser absorption in the pre-plasma almost no laser interaction with the solid target Y. Sentoku et al., Phys. Plasm. 10 (2003) 2009

22 RPA (Radiation Pressure Acceleration)
Courtesy of S. Bulanov

23 Towards Quark-Gluon Plasma
Courtesy of S. Bulanov

24 Records in laser-driven particle acceleration
Protons Electrons R.A. Snavely et al., Phys. Rev. Lett. 85 (2000) 2945 S.A. Gaillard et al., “65+ MeV protons from short-pulse-laser micro-cone-target interactions”, Bull. Am. Phys. Soc. G06.3 (2009) (only 10% energy increment ) W.P. Leemans et al., Nature Phys. 2 (2006) 696 A technological progress is needed: towards higher laser intensities!!!

25 Beyond the energy frontier...
K. Zeil et al., New Journal of Physics 12 (2010) J. Fuchs et al., C. R. Physique 10 (2009) 176 and references therein ELI intensity regime

26 Envisioned proton beams
2 PW beamlines (10 Hz) 50 J, 25 fs, 1021 W/cm2, RPA, Epeak = 200 MeV, h = 65%, Np 1012, div.: 4°, quasi-monoenergetic References: Matt Zepf, ELI-Beamlines Sci. Chall. Workshop, April 26th, 2010 10 PW beamlines (0.016 Hz) 1.3 kJ, 130 fs, 1023 W/cm2, ECut-off = 2 GeV, h = 50%, Np 2x1012, div. 10° 2x1.3 kJ, 130 fs, 20 PW, 2x1023 W/cm2, ECut-off = GeV 5x1.3 kJ, 130 fs, 50 PW, 5x1023 W/cm2, ECut-off = 4 GeV (ELI end-stage) B. Qiao et al, PRL 102 (2009)145002 J. Davis and G.M. Petrov Physics of Plasmas 16, (2009) ELI White-book, OSIRIS simulations (by Luis Cardoso) B. Qiao et al, PRL 102, (2009) 6x1022W/cm2 2x1022W/cm2 2x1021W/cm2

27 Basic experiment at E6a (high rep. rate)
TNSA/RPA: PL = 2 PW (10 Hz), IL 1022 W/cm2 , Emax = 200 MeV, Np 1012 Legend OAP: off-axis-parabola; T: primary target; T1/T2: secondary target (proton radiography); RCF: radiochromic film; FM: flat mirror; EMQ: electromagnetic quadrupole optics (1.5 Tesla), TP spectrometer (B=1.5 T, E=10-50 kV); D: detector (film/semiconductor); V: gate valve, LS: local shielding (g-rays/neutrons)

28 Challenges & advanced source use
Proton/ion acceleration Improving the beam quality in terms of divergence and monochromaticity Increasing the beam stability (energy distribution, particle numbers, emittance) Optimizing the laser to ion conversion efficiency Use of ultrathin targets (very high contrast and circular polarization are needed) Beam handling & selection (either through target engineering or conventional solutions, e.g. micro-lenses or magnetic quadrupoles) Electron acceleration External injection: development of effective electron beam loading techniques Use of an all-optical injection scheme (colliding pulses) Use of a tailored longitudinal plasma density profile Development of a multiple stage acceleration setup including laser and electron beam optics (synchronization of the laser and electron beams in several tens of meters is necessary!) Diagnostic requirements and development Strong energy increase of the particles produced at extreme laser intensities (particles whose energies will range from MeV to tens of GeV) Huge particle number per shot per second (prompt current) Energy and beam spreading of produced particles (no unique detector can be used) Huge EMP

29 Laser-driven hadron-therapy (ELI-MED)

30 Courtesy of J. Wilkens

31 Courtesy of J. Wilkens

32 Courtesy of J. Wilkens

33 Courtesy of J. Wilkens

34 Courtesy of J. Wilkens

35 Courtesy of J. Wilkens

36 Courtesy of J. Wilkens

37 One of the big Challenges in Physics would be to built
a laser powerful enough to breakdown vacuum. Survey by “Science” 2005

38 EQ=mpc2 Ultra-relativistic intensity is
defined with respect to the proton EQ=mpc2, intensity~1024W/cm2

39 Inverse Compton Scattering
The Doppler energy upshift allows one to reach high photon energies, e.g. 100 MeV g-rays with a 10-GeV electron beam.

40 ELI White Book 530 pages of Science, technology and implementation strategies of ELI





45 It’s time to wake up!!! Thank you for your attention and invitation!

Download ppt "Science Case at ELI-Beamlines"

Similar presentations

Ads by Google