Download presentation

Presentation is loading. Please wait.

Published byToni Mallin Modified over 3 years ago

1
Photon statistics without photon counting S. Olivares, A. R. Rossi, M. G. A. Paris, G. Zambra (UniMi) A. Andreoni, M. Bondani (UniInsubria) M. Genovese, M. Gramegna, G. Brida (IEN-To) S. Olivares, A. R. Rossi, M. G. A. Paris, G. Zambra (UniMi) A. Andreoni, M. Bondani (UniInsubria) M. Genovese, M. Gramegna, G. Brida (IEN-To)

2
Summary Why the photon distribution ? Why not photon counting ? MaxLik estimation: iterative solution Experimental verification Outlooks Why the photon distribution ? Why not photon counting ? MaxLik estimation: iterative solution Experimental verification Outlooks

3
Photon distribution Nonclassicality Channel capacity Quantum radiography Nonclassicality Channel capacity Quantum radiography

4
Photon counting Photomultipliers / Hybrid photodetectors Solid state detectors Thermal detectors Homodyne detection (Quantum Tomography) Photomultipliers / Hybrid photodetectors Solid state detectors Thermal detectors Homodyne detection (Quantum Tomography)

5
On/Off detection Multiple quantum efficiencies LINPOS problem On/Off statistics η η quantum efficiency

6
Probability distribution Random sample Joint probability of the sample Probability distribution Random sample Joint probability of the sample MaxLik estimation Maxlik estimation take the value of the parameters which maximize the likelihood of the observed data

7
Likelihood of the data set Maximization of a function of several variables (numerical, time-consuming) MaxLik Estimation of

8
Iterative solution Convergence Accuracy Robustness Convergence Accuracy Robustness

9
Iterative solution Convergence # iterations x 1000

10
Iterative solution Accuracy Robustness to fluctuations on η Coherent state

11
CW regime Weak coherent state Heralded single-photon state

12
Pulsed regime Gaussian Thermal Multithermal

13
Current developments Extension to two or more modes (IEN) Comparison with schemes involving one- photon-resolving detectors Improving the approximation (Z. Hradil & J. Rehacek, Olomouc, Czech Rep) Extension to two or more modes (IEN) Comparison with schemes involving one- photon-resolving detectors Improving the approximation (Z. Hradil & J. Rehacek, Olomouc, Czech Rep)

14
Reconstruction of the whole density matrix Reconstruction of the Wigner function (Insubria) Reconstruction of the whole density matrix Reconstruction of the Wigner function (Insubria) Outlooks References qinf.fisica.unimi.it/~paris/

Similar presentations

OK

2-15-051 Estimating parameters in a statistical model Likelihood and Maximum likelihood estimation Bayesian point estimates Maximum a posteriori point.

2-15-051 Estimating parameters in a statistical model Likelihood and Maximum likelihood estimation Bayesian point estimates Maximum a posteriori point.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on depth first search complexity Ppt on care of public property auction Free ppt on moving coil galvanometer Ppt on new zealand culture images Ppt on fourth and fifth state of matter liquid Ppt on regional transport office kerala Ppt on data collection methods quantitative research Seminar ppt on data mining Ppt on turbo generator free download Marketing mix ppt on nokia phone