Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 From Pipeline Data to Inspection Planning Jean Alain MOREAU, Marie PAJOT, Florian FABRE, Yves GIRAUD Integrity Management.

Similar presentations


Presentation on theme: "1 From Pipeline Data to Inspection Planning Jean Alain MOREAU, Marie PAJOT, Florian FABRE, Yves GIRAUD Integrity Management."— Presentation transcript:

1 1 From Pipeline Data to Inspection Planning Jean Alain MOREAU, Marie PAJOT, Florian FABRE, Yves GIRAUD Integrity Management

2 2 TIGF at a glance In 2005, the Gas & Power business line of TOTAL creates TIGF TIGF operates : km of natural gas transmission pipelines (13% national network), 6 recompression units (100 MW) 5.4 Gm3 underground storage facilities (22% national capacity). TIGF does not own any gas, but transports and stores it for others gas market actors.

3 3 The AMF decree dated August 4th, 2006 : Own a Geographical Information System (GIS) for 2009 with a Technical Data Base for 2011 VIGIE – Visualisation et Information Géographique des Installations Enterrées (Geographical Visualization and Information of Underground Installations) Plan inspections, surveys and mitigations OGIC - Outil de Gestion de lIntégrité des Canalisations PIMS - Pipeline Integrity Management System For TIGF, these are 2 federating projects which shall : Allow to share data and informations with all users, Help with decision making

4 4 The Technical Database

5 2 different Tools, 1 single Database to meet regulatory compliance Technical Data Base Recording & georeferencing data PODS Work Order Maximo On the field VIGIE Geographic Information System Analyse and Display PODS data Threat Analyse Mitigation and Inspection Planning OGIC Dalle Inspection, CP Geographic features, Structure Environment Diameter Pressure Thickness Join, Coating Construction

6 6 PODS, the heart of VIGIE and OGIC : Built on V Experience of many pipeline network operators, mainly oil and gas Independent of the GIS publishers Exhaustive description of pipeline networks 3D imaging of events that form or describe the pipeline Complex work To collect and indentify all available data Mainly manual tasks In few numbers, its about : 70 types of various documents used documents collected from the Archives A4 format scanned 3 years, hours (until 20 persons) Cost : 2 MEUR for the actual Database Without the pipeline environment (1 MEUR) Without the survey, inspection, repairs and CP data (for 2011)

7 7 Geometry

8 8 Data reprocessing

9 9 Step 2 Step 3: 3D Drawing Step1 Data analysis Detailed Pipe- segment Files (FIT) Old data reprocessing methodology Step 4 : Feeding Drawing :. dgb and 3D Add complementary data (concrete slab, casing, crossing…) O2GB2D Query/ report edition Data check BDT Oracle On PODS model Preparation of a technical electronic document management CMMS Technical data Scanning and Compilation Document Management Data Base Environment DB

10 10 Step1 CMMS Technical data Scanning and Compilation Document Management Data Base Step 2 Data analysis Detailed Pipe- segment Files (FIT) Step 3: 3D Drawing Drawing :. dgb et 3D Add complementary data (concrete slab, casing crossing…) Step 4 : Feeding O2GB2D BDT Oracle On PODS model Step by step data reprocessing

11 11 Step 1 : Scanning and Compilation 1992 : Construction 2006 : Modification 2006: Pressure test

12 12 Step 2 : Data analysis FIT 1992 : Construction 2006 : Modification 2006: Pressure Test

13 13 Step 3 : 3D Drawing 3D 2D FITFIT

14 14 Step 4 : Database feeding (PODS)

15 What Kind of data in PODS : Network : LINES : Pipelines SITES : Compression station, Valve and Delivery station, Security valve, CP Data : Pipe length, weld join, tee, elbow, closure... Nominal diameter, Wall thickness, Steal grade, coating, MAOP Dot Class Crossing (river, road, railroad,...) Protection (casing, Concrete slab, river weight), Marker Building and housing (HI, IGH, ERP, ICPE) In the future : Nominal Depth of cover, temperature Defects, Repairs, Regulatory compliance effects

16 16 TIGF PODS Interpretation : PODS Nomenclature globale AAAAAAXXX S3333P4444 Identification de lévènement Identification complémentaire (du sous-type sil existe) Identification des points crées (*) AAAAAAXXX S3333P4444 code ouvrage code correspondant au type dévénement incrément global pour les évènements ordre dans lequel lélément apparaît dans louvrage sous-type (Pipe_Length est un sous type de Pipe_Segment) incrément pour chaque coordonnée créée OUVRAGEVALIDEEXPORTSUPPRESSIONAJOUTMAJDATE_DATALONGUEURNBPIECEFORMENBTUBENBSOUDURE 07A01C juin , A02C oct , A03C juil TIGF used the field X_Guid in order to know quickly the link between event and line TIGF collect data by LINE (ouvrage lineaire) (pipeline between 2 valves station) and doesnt used the SERIES table => 1 ROUTE = 1 SERIE When a modification appears on a pipeline, TIGF delete the former pipeline and regenerate the new one (due to the quantity of link between data) A table allows to manage the pipeline creation, delete and re generation.

17 17 TIGF PODS Interpretation : PODS FEATURE_IDTYPE_CLCATEGORY_CLDESCRIPTIONTABLE_NAMEHISTORY_TABLE_NAME CLOSUREMULTIPOINTPIPELINE01Fermeture, EmboutClosureSTRUCTURE ELBOWMULTIPOINTPIPELINE01CoudeElbowSTRUCTURE FLANGEMULTIPOINTPIPELINE01BrideFlangeSTRUCTURE LAUNCHER_RECEIVERMULTIPOINTPIPELINE01Gare de racleurLauncher_ReceiverSTRUCTURE PIPE_JOINPOINTPIPELINE02SoudurePipe_JoinSTRUCTURE PIPE_LENGTHLINESTRINGPIPELINE02Longueur de tubePipe_LengthSTRUCTURE REDUCERMULTIPOINTPIPELINE01RéductionReducerSTRUCTURE TEEMULTIPOINTPIPELINE01TeTeeSTRUCTURE VALVEMULTIPOINTPIPELINE01VanneValveSTRUCTURE TIGF created a layer named STRUCTURE : Association of all the events in FEATURE_TABLE wich create the complete pipeline Field FEATURE_TABLE.HYSTORY_TABLE_NAME = STRUCTURE The accuracy of the drawing of a pipeline in the database could be check trough different ways: LINE ROUTE SERIES PIPE_SEGMENT STRUCTURE LAYER : PIPE LENGTH, PIPE JOIN, ELBOW, TEE, ….

18 18 Modification of PODS : Try to be faithful to PODS spirit TableDescriptionStructureNew_StructureMotif CASINGNOMINAL_WALL_THICKNESS_GCLNUMBER(6,4)NUMBER(6,2)Diminution du nombre de décimales COORDINATEX_COORDFLOAT(15)FLOAT(32)Augmentation de la taille du champ COORDINATEY_COORDFLOAT(15)FLOAT(32)Augmentation de la taille du champ COORDINATEZ_COORDFLOAT(15)FLOAT(32)Augmentation de la taille du champ EVENT_RANGEFEATURE_IDVARCHAR2(16)VARCHAR2(38)Augmentation de la taille du champ FEATURE_TABLEFEATURE_IDVARCHAR2(16)VARCHAR2(38)Augmentation de la taille du champ LINELINE_GUIDCHAR(38)VARCHAR2(38)Changement du type de champ LINE_HIERARCHYPARENT_LINE_GUIDCHAR(38)VARCHAR2(38)Changement du type de champ LINE_HIERARCHYLINE_HIERARCHY_GUIDCHAR(38)VARCHAR2(38)Changement du type de champ PIPE_BENDVERT_ANGLENUMBER(5,3)NUMBER(6,3)Augmentation de la taille du champ PIPE_BENDHORIZ_ANGLENUMBER(5,3)NUMBER(6,3)Augmentation de la taille du champ ROUTELINE_GUIDCHAR(38)VARCHAR2(38)Changement du type de champ STATION_POINTLINE_GUIDCHAR(38)VARCHAR2(38)Changement du type de champ Modification of existing field Add New fields TableDescriptionStructure ALIGNMENT_SHEETPLAN_NUMBERVARCHAR2(10) ALIGNMENT_SHEETCODE_PLANVARCHAR2(12) CASINGTYPE_CLVARCHAR2(16) LINEPROPRIETAIRE_CLVARCHAR2(10) LINEOPERATING_STATUS_GCLVARCHAR2(16) LINECONCESSION_CLVARCHAR2(2) LINECODE_OUVRAGE_JURIDIQUEVARCHAR2(10) PIPE_SEGMENTNUMBER_OF_AFFAIRVARCHAR2(15) PIPE_SEGMENTMINIMAL_WALL_THICKNESS_GCLNUMBER(6,4) PIPE_SEGMENTEXTERNAL_DIAMETER_GCLNUMBER(8,4) REDUCERCHAMFER_WALL_THICKNESS_IN_GCLNUMBER(6,4) REDUCERCHAMFER_WALL_THICK_OUT_GCLNUMBER(6,4) STRUCTUREVISITOR_COUNTNUMBER(6) STRUCTUREEMPLOYER_COUNTNUMBER(6) VENT_PIPETYPE_CLVARCHAR2(16)

19 Vérification des données Génération des Géométries Gestion de projet Etape 2 : Vérification et génération des géométries Etape 3 : Paramétrage du SIG Gestion des droits Gestion de paramètres pour le SIG Gestion des fonctionnalités spécifiques Etape 1 : Saisie et interprétation de la donnée 19 PODS data organization: Récolte des données Saisie et ordonnancement de la documentation + Numérisation Saisie des carnets de soudures Interprétation des données Intégration des données recoltées dans un espace géoréférencé Alimentation des caractéristiques des Event-range Localisation : Sous-traitant Action :Actavision Importation par dump Vers un schéma Oracle PODSI PODSI Génération des géométries Via loutil SIG (GEOMEDIA) VIGIE Localisation : TIGF Action :TIGF Localisation : TIGF Action :ATOS/INTERGRAPH GEOMETRY CARTO Schema based on ORACLE10g

20 20 Data sharing with GIS

21 21 Treatment Viewer County Structure Pipelines Aerial Photography Software Land register Database Users Etc. Topographic map An architecture, from database to end users Data available for all

22 22 The GIS software INTERGRAPH software Geomedia Pro + Transportation for administrators (7) Geomedia WebMap Pro for users (300) Business functions : Data Migration to create Geometry Dynamic Segmentation, 3D modelling Emergency management, network optimisation User functions : Geographic map position, Looking for a pipeline Place a pipeline in its environment Cost :1,3 MEUR

23 23 Inspection Planning with PIMS

24 PIMS is named OGIC Based on A Threat Model (Threat Tree) and a methodology – TAME (BV + ATP) A Structured database - PODS Supported by Continuous improvement cycles common to other management systems Seeking to Protect the assets Identify and prioritize pipelines by threat level Capitalize knowledge Plan integrity actions (inspection / surveys / mitigations) Optimize both capital and operating expenditures A decision support tool to plan inspection and surveys

25 25 Integrity involves Threats to pipelines Safety involves loss of integrity consequences to Human and to Natural Environment Risk (Decrease) Mitigation Measures Surveys and Inspection Integrity Model : Threat definition

26 26 INTEGRITY Identify threats Identify Mitigations Evaluate probability Calculate loss consequences Classify pipeline segments Plan Carry out mitigations Integrity Cycle Record Calculate level of threat Integrity Model : Concept

27 Out of 100 threats in the complete model 45 are already resident in PODS 18 require specific analysis by GIS 37 are borrowed from external database Integrity Model : the Threat tree

28 28 Soil resistivity Ω.m V 0 Pipe CP Remaining cycles (PIG) DCVG results Defect OK Feature OK Threat level m 1.2 Depth of cover 0 Integrity Model : Threat identification and positioning

29 29 1.Mitigation proposals 2. The what-if function To assess the effect of the various proposed measures to lower the level of threat. Mitigations and What If studies

30 30 Analyse of pipelines and Integrity Tasks ScheduleOGIC Plan Integrity TasksOperators Do Refine Integrity Model TAME/OGIC Act Follow progress Maximo/VIGIE Check Plan Do Check Act Level of threat Inspection and survey rulesPlan Inspection and survey plan (PIMS approach) Validation of the model in a global process management

31 31 To conclude

32 32 To conclude VIGIE (GIS) and OGIC (PIMS) projects : structure and share the information, make TIGF regulatory compliant, highlight true threats incurred by the pipelines, outlay an inspection program based on true threats, optimize actions means and resources Nevertheless, Survey (foot, car, plane..) is, and remains the main guaranty of the underground networks safety, for civil work carried out by third parties that will never be completely controlled.

33 33 Thank you for your kind attention


Download ppt "1 From Pipeline Data to Inspection Planning Jean Alain MOREAU, Marie PAJOT, Florian FABRE, Yves GIRAUD Integrity Management."

Similar presentations


Ads by Google