Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. Manzolaro 1,b), M. Manente 2, D. Curreli 3, J. Vasquez 1, J. Montano 1, A. Andrighetto 1, G. Meneghetti 3, D. Pavarin 2,3, D. Scarpa 1, M. Rossignoli.

Similar presentations


Presentation on theme: "M. Manzolaro 1,b), M. Manente 2, D. Curreli 3, J. Vasquez 1, J. Montano 1, A. Andrighetto 1, G. Meneghetti 3, D. Pavarin 2,3, D. Scarpa 1, M. Rossignoli."— Presentation transcript:

1 M. Manzolaro 1,b), M. Manente 2, D. Curreli 3, J. Vasquez 1, J. Montano 1, A. Andrighetto 1, G. Meneghetti 3, D. Pavarin 2,3, D. Scarpa 1, M. Rossignoli 1, A. Monetti 1, A. Tomaselli 4, A. Galatà 1, L.A.C. Piazza 1, L. Biasetto 1, M. Lollo 1, A. Cavazza 1, L. Costa 1, G. Bassato 1, M. Giacchini 1, M. Poggi 1, L. Boscagli 1 and G. Prete 1 Off-line ionization tests using the Surface and the Plasma ion sources of the SPES Project 1 INFN - Legnaro National Laboratories, Legnaro, Padova, ITALY 2 CISAS (Centro Interdipartimentale Studi Attività Spaziali), Department of Mechanical Engineering, University of Padova, Via Venezia 1, Padova, ITALY 3 Department of Mechanical Engineering, University of Padova, Via Venezia 1, Padova, ITALY 4 Department of Electronics, University of Pavia, Via Ferrata 1, Pavia, ITALY [1] A. Andrighetto, C.M. Antonucci, S. Cevolani, C. Petrovich, M. Santana Leitner, Eur. Phys. J. A 30, 591 (2006). [2] J. Montano, J. Vasquez, A. Andrighetto, G. Bassato, L. Calabretta, M. Poggi, G. Prete, Nucl. Instrum. and Meth. Phys. Res. A 648, 238 (2011). [3] M. Manzolaro, G. Meneghetti, A. Andrighetto, Nucl. Instrum. and Meth. Phys. Res. A 623, 1061 (2010). [4] S. Sundell, H. Ravn, The ISOLDE Collaboration, Nucl. Instrum. and Meth. Phys. Res. B 70, 160 (1992). [5] D. Pavarin, F. Ferri, M. Manente, D. Curreli, D. Melazzi, D. Rondini, A. Cardinali, Proceedings of the 32th International Electric Propulsion Conference, Wiesbaden (Germany), 11-15 September 2011. [6] R. Kirchner, E. Roeckl, Nucl. Instrum. and Meth. Phys. Res. 133, 187 (1976). [7] Y. Liu, Y. Kawai, H. Z. Bilheux, Proceedings of 2005 Particle Accelerator Conference, Knoxville (Tennessee), 16-20 May 2005. [8] F. Wenander, J. Lettry, M. Lindroos, Nucl. Instrum. and Meth. Phys. Res. B 204, 261 (2003). The front-end used at LNL (original FE6 design by S. Marzari - CERN) target - ion source vacuum chamber insulators steerers and quadrupoles emittance meter Faraday cup beam profiler The front-end used at Legnaro National Laboratories to test and study the SPES ion sources [1,2] The SPES Surface Ion Source [3,7,8] The SPES Plasma Ion Source [4,6,8] Numerical simulation of the ion beam extraction and emittance calculation for the SPES Plasma Ion Source [5] beam current monitoring, charge integration and ionization efficiency measurement ion source temperature monitoring vacuum chamber housing the ion source infrared pyrometer Kodial® viewport hot cavity temperature monitoring during an ionization efficiency measurements for the SPES Surface Ion Source (view through the Kodial® viewport) transversal emittance measurements beam profile monitoring GAS FEED PLASMA ION SOURCE ANODE CONNECTION TRANSFER LINE Mass Marker Capillarity Method (developed at ISOLDE/CERN) Ionization efficiency for Cs was measured using calibrated Cs samples housed inside the oven (see the figure on the left side). To perform this kind of measurement the SSIS’s temperature was rapidly increased up to 2100°C. Then the oven was heated, allowing the Cs sample to vaporize, while the ion current was continuously recorded until the sample completely evaporated out of the source. The ionization efficiency was calculated as the ratio of the integrated number of detected ions to the total number of atoms in the calibrated sample. SURFACE ION SOURCE OVEN TRANSFER LINE d = 75 mm Ionization efficiency estimations and emittance measurements d = 75 mm Emittance measurements ANODE (PLASMA CHAMBER) EXTRACTION HOLE EXTRACTION ELECTRODE control of the source main working parameters: I line (I hot_cavity / I cathode ), I oven, V anode, I magnet F3MPIC (3D Particle-in-Cell code developed at CISAS UNIPD) F3MPIC is an electrostatic and electromagnetic Particle-in-Cell code for plasma simulations. It moves plasma particles in time domain inside a volumetric mesh of tetrahedra. The SPES Plasma Ion Source has been simulated with F3MPIC using a two-species plasma of single-ionized Ar ions plus electrons. The unstructured mesh of tetrahedra allows a proper treatment of the plasma dynamics on the complex geometry of the extraction region. The resulting RMS emittance for an “electrode – ion source” distance (d extraction ) of d=38 mm is showed in figure; a value of 16.8 π mm mrad was obtained, in good agreement with the correspondent experimental value (13.7 π mm mrad). Emittance ellipse of SPES Plasma Ion Source for Argon ions and d=38.0 mm, as calculated with F3MPIC Electric potential (logaritmic plot) in the region between the anode and the extraction electrode, for d=3.5 mm F3MPIC numerical simulation of an Argon beam as extracted from the SPES Plasma Ion Source. Plots are the numerical density [m -3 ] of Argon ions, logarithmic plot IPAC ‘12 – International Particle Accelerator Conference – May 20 th -25 th, 2012 – New Orleans, Louisiana, USA


Download ppt "M. Manzolaro 1,b), M. Manente 2, D. Curreli 3, J. Vasquez 1, J. Montano 1, A. Andrighetto 1, G. Meneghetti 3, D. Pavarin 2,3, D. Scarpa 1, M. Rossignoli."

Similar presentations


Ads by Google