Presentation is loading. Please wait.

Presentation is loading. Please wait.

NOW 2010 Kohta Murase (Center for Cosmology and AstroParticle Physics, Ohio State University, USA) High-energy neutrinos from extragalactic cosmic-ray.

Similar presentations


Presentation on theme: "NOW 2010 Kohta Murase (Center for Cosmology and AstroParticle Physics, Ohio State University, USA) High-energy neutrinos from extragalactic cosmic-ray."— Presentation transcript:

1 NOW 2010 Kohta Murase (Center for Cosmology and AstroParticle Physics, Ohio State University, USA) High-energy neutrinos from extragalactic cosmic-ray sources

2 Outline Overview of HE s from extragalactic sources Gamma-ray bursts Active galactic nuclei & clusters of galaxies Newly born magnetars  emission from sources of UHE nuclei

3 Neutrinos as a Messenger Purposes: Origin of cosmic rays (CRs) Source properties (jet contents, magnetic field etc.) Clues to acceleration mechanisms GeV-TeV gamma-ray obs.: ・ attenuation in sources and/or CMB/CIB ・ contamination by leptonic emission HE-neutrino obs. (>0.1TeV): ・ more direct probe ・ neutrino physics (e.g., oscillation) Neutrinos produced outside a source (e.g., cosmogenic) (->Stanev, Olinto) Neutrinos produced inside a source In this talk, we focus on the latter

4 Extragalactic Cosmic-Ray Accelerators Hillas condition E < e B r  E>10 20 eV, Z=1 → L B ≡  B L > 10 47.5 erg/s   2  -1 UHECR source candidates The most extreme objects! GRB AGN jet clusters r B AGN GRBs Clusters The most massive BH M BH ~10 6-9 M sun The brightest explosion E GRB ~10 51 ergs The largest grav. obj. r vir ~ a few Mpc Magnetars The strongest mag. fields B ~ 10 15 G magentars

5 マスタ サブタイトルの書式設定 5 Gamma-Ray Bursts

6 (Long) Gamma-Ray Bursts The most violent phenomena in the universe (L  ~10 51-52 ergs s -1 ) Cosmological events (z~1-3) ~1000 per year ( ⇔ ~ 5 yr -1 Gpc -3 @ z~1) Relativistic jet (  ~300;   ~ 10 51 ergs ~ 0.01  ,iso,  jet ~ 0.1 rad) Related to the death of massive stars (association with SNe Ic) Gamma-ray ~ 300 keV Duration ~ 10-10 3 s Prompt (GRB) Afterglow X-ray 、 optical 、 radio variability~ ms Time Luminosity 10-10 2 s10 3 -10 4 s

7 Prompt emission PeV ν, GeV-TeV γ (Waxman & Bahcall 97 PRL) (KM et al. 06 ApJL) Meszaros (2001) emission radius ~ 10 13 -10 15.5 cm mildly relativistic shocks magnetic field ~10 2 -10 5 G Orphan emission TeV ν, no γ (Meszaros & Waxman 01 PRL) (Razzaque et al. 03 PRL) (Ando & Beacom 95 PRL)

8 Basics of Neutrino Emission εpεp CR Spectrum (Fermi mechanism) Key parameter CR loading 10 18.5 eV10 20.5 eV εγεγ Photon Spectrum (observed) ε γ,pk ~300 keVε max Photomeson production efficiency ~ effective optical depth for pγ process f pγ ~ 0.2 n γ σ pγ (r/Γ) Δ-resonance at Δ-resonance ε p ε γ ~ 0.3 Γ 2 GeV 2 ε p b ~ 0.15 GeV m p c 2 Γ 2 /ε γ,pk ~ 50 PeV ε p 2 N(ε p ) 2-α~1.0 2-β~-0 2-p~0 ~ΓGeV ε γ 2 N(ε γ ) E HECR ≡ε p 2 N(ε p ) ~ε γ,pk 2 N(ε γ,pk ) multi-pion production Photomeson Production (in proton rest frame) total E CR ~20E HECR

9 pion energy ε π ~ 0.2 ε p break energy ε π b ~ 0.07 GeV 2 Γ 2 /ε γ,pk ~ 10 PeV επεπ Meson Spectrum επbεπb ε π syn β-1~1 α-1~0 ε π 2 N(ε π ) Neutrino Spectrum ενbενb β-1~1 α-1~0 ε ν 2 N(ε ν ) meson cooling before decay (meson cooling time) ~ (meson life time) → break energy in neutrino spectra Neutrino oscillation ~f pγ E HECR α-3~-2.0 meson & muon decay “Waxman-Bahcall” type spectrum (Waxman & Bahcall 97 PRL) ε ν μsyn ε ν πsyn ενεν α-3~-2.0 neutrino energy ε ν ~ 0.25 ε π ~ 0.05 ε p ν lower break energy ε ν b ~ 2.5 PeV ν higher break energy ε ν πsyn ~ 25 PeV No loss High ε ν Loss limit p  process (Kashti & Waxman 05 PRL)

10 GRB Prompt ●Meson production efficiency is rather uncertain mainly due to r and  ●~0.1-10 events/yr by IceCube (w. moderate CR loading) ●Testable case: GRB-UHECR hypothesis/Hadronic model for Fermi GRBs IceCube is constraining optimistic cases (Becker’s talk, Kappes arXiv:1007.4629) moderate CR loading E HECR ~ 0.5 E GRB  (U p =10U  ) high CR loading E HECR ~ 2.5 E GRB  (U p =50U  ) CR loading parameter Ε HECR ≡ε p 2 N(ε p ) Set A - r~10 13-14.5 cm Set B - r~10 14-15.5 cm Γ=10 2.5, U  =U B KM & Nagataki, PRD, 73, 063002 (2006) Event rates by IceCube for 1 GRB @ z~1 ~ 10 -4 -10 -2 → Cumulation of many GRBs (time and space coincidence) see also Dermer & Atoyan 03 PRL Guetta et al. 04 APh Becker et al. 06 APh

11 Alternative Scenario? Internal shock model has problems in explaining observations Prompt emission may be quasi-thermal rather than nonthermal (e.g., Thompson 94, Rees & Meszaros 05, Ioka, KM+ 07)  -ray emission from   =n e   (r/  )~1-10 ⇔  pp ~ 0.1-1 GeV-TeV neutrinos due to pp Efficiency is almost fixed Detectable for smaller E HECR Detectable even if proton acceleration is inefficient UHECRs are not produced Γ=10 2.5, U  =U B E HECR =10 51 erg KM, PRD(R), 78, 101302 (2008) Wang & Dai, ApJL, 691, L67 (2009) pp pp

12 Early Afterglows EeV ν, GeV-TeV γ (KM & Nagataki 06 PRL) (Dermer 07 ApJ) (KM 07 PRD) Meszaros (2001) Classical Afterglows External Shock Model EeV ν, GeV-TeV γ (Waxman & Bahcall 00 ApJ) (Dai & Lu 01 A&A) (Dermer 02 ApJ) emission radius ~ 10 16 -10 17 cm mildly relativistic reverse shock & ultra-relativistic forward shock magnetic field ~0.1-100 G

13 GRB Early Afterglow ES protons + ES opt-x rays Stellar Wind Medium (normalized by UHECR budget) Late IS protons + flare x rays (normalized by 10% of UHECR budget) KM, PRD, 76, 123001 (2007) ES protons + ES opt-x rays Inter Stellar Medium (normalized by UHECR budget) KM & Nagataki, PRL, 97, 051101 (2006) Flares – efficient for meson production (f p  ~ 1-10) and detectable ES – not easy to be seen by both neutrinos and gamma rays Afterglows are explained by the external shock model Proton acceleration is possible during afterglows analogous to in SNRs Many GRBs accompany energetic flares during afterglows

14 Active Galactic Nuclei and Clusters of Galaxies

15 Active Galactic Nuclei Super-massive black holes (M~10 6-9 M sun ) Accretion onto a BH (accretion disk) and relativistic jets (  ~3-30) Beamed nonthermal emission from inner jets -> blazar emission AGN w. powerful jets -> radio galaxies (Fanaroff-Riley I&II) ~1% of AGN have hot spots as well as lobes (Fanaroff Riley II) jet BH accretion disk dust torus

16 CR and Production in AGN Inner jet (blazar; FRI/II) (c.f. prompt) r ~ 10 16 -10 17 cm B ~ 0.1-100 G Hot spot, Cocoon (FRII) (c.f. afterglow) r ~ 10 21 cm B ~ 1 mG r ~ 10 22 cm B ~ 0.1  G?? E max ~ E esc ~ 10 20-21 eV e.g., Biermann & Stritmatter 87 ApJ Takahara 90 PTP Rachen & Biermann 93 A&A Berezhko 08 ApJL E max ~ E p  <~ 10 17-20 eV neutron conversion? e.g., Biermann & Stritmatter 87 ApJ Mannheim+ 92 A&A Atoyan & Dermer 01 PRL * Core (disc/vicinity of BH) (c.f. orphan) optimistic cases (no UHECRs) Stecker+ 91 PRL, Protheroe & Szabo 92 PRL

17 Neutrinos and Gamma Rays from Blazars Mucke et al. 02 Low-peak High-peak X-ray GeV γTeV γ IR,optical HE Lower-peak blazars tend to have larger luminosities Lower-peak blazars → efficient ν (and  ) production (~ EeV neutrinos) (On the other hand, UHECR survival is more difficult due to p  ) Neutrino spectrum Observed Photon Spectrum Mucke+ 03 APh Low-peak BL Lac High-peak BL Lac

18 HE emission can be explained by the hadronic model as well as leptonic model (e.g., Mannheim 93, Aharonian 02, Mucke+ 03) This scenario requires high CR loading, L CR >~ L rad Contd. Jet+Disk jet Jet only N  ~ 10 -3 N  ~ 0.1-0.4 s from blazars may be seen by seed photons from acc. disc (but UHECRs are depleted c.f. GRB flares) Atoyan & Dermer 01 PRL Atoyan & Dermer 03 ApJ

19 AGN Jet Various models from different motivations Core/Blazar-max. (norm. @ MeV/>0.1GeV) are being constrained Norm. by UHECRs for typical BL Lacs → < 0.1-1 events/yr But we will be in the interesting stage Core (Stecker 05) BL Lac jet (Mucke+ 03) Blazar-max. jet (Mannheim+ 01) FRII jet (Becker+05) Becker 06 PhR KM 08 AIPC

20 Cen A (Non-Blazar) Cen A: nearest AGN (FRI) @ ~3 Mpc Apparently correlated with UHECRs observed by Auger UHECR source? (e.g., Gorbunov+ 08, Sigl 09, Hardcastle 09, Gopal-Krishna+ 10) Acc. sites Core/inner jet Possible hot spots Lobes But s from inner jets are off-axis emission p  in core pp in extended high-density region → < a few events/yr (Cuoco&Hannestad 08 PRD Kachelriess+ 09 NJP 09) But, then Cen A should be particular ( Koers & Tinyakov 08 PRD ) Kachelriess+, NJP, 76, 123001 (2009) (Biermann’s talk)

21 AGN and Clusters of Galaxies Clusters of galaxies contain AGN The largest gravitationally bounded objects (M~10 14-15 M sun, r ~ Mpc) Cosmic-ray storage room (AGN, Galaxies) Structure formation shocks (matter accretion, cluster mergers) CRs interact with intracluster gas via pp (Berezinsky+97 ApJ, Colafransesco & Blasi 98 APh) CRs interact with rad. field via p  (De Marco+ 06 PRD, Kotera, Allard, KM+ 09 ApJ) >30 PeV CRs lead to >PeV s

22 AGN and Clusters KM, Inoue, & Nagataki, ApJL, 689, L105 (2008) Norm. by HECRs above 10 17.5 eV → a few events/yr (>0.1PeV)  s are cascaded ⇔ can be consistent with Fermi  -ray bkg. all the flavors E b =10 17.5 eV Kotera+, ApJ, 892, 391 (2009) pp pp

23 マスタ サブタイトルの書式設定 23 Newly Born Magnetars

24 Magnetars Corr. w. spiral galaxies → magnetar or GRB? Ghisellini+ 08 MNRAS, Takami+09 JCAP Neutron stars with the strongest magnetic fields (B~10 15 G>10 12 G) Giant flares (E flare ~10 44-46 erg) Slow rotation at present (period ~5-10 s) but maybe fast rotation at birth (period ~ ms) Birth rate may be ~ 10 % of core-collapse SN rate

25 Production in Fast-Rotating Magnetars Production in Fast-Rotating Magnetars (possible) jet UHECR acc. may occur in a cavity ~hrs after the birth (Arons 03 ApJ) Surrounded by stellar envelope Accelerated CRs interact with envelope and rad. Field → meson production Escape of UHECRs ? e.g., puncturing envelope by jets → A fraction of CRs may produce mesons in jets as in GRBs naturally expected in the magnetar-UHECR scenario NS envelope shock wind cavity

26 Fast-Rotating Magnetars Expected muon-event rate ~ 1-10 events/yr Rate detecting >1 s → ~ 0.1 yr -1 (useful for alerts) Detectable for D<5Mpc Time scale ~ day soft-hard-soft time-evolution Probe of the magnetar birth KM, Meszaros, & Zhang, PRD, 79, 103001 (2009)

27 Neutrinos from Sources of UHE Nuclei

28 Proton or Nuclei? HiRes/TA -> proton composition Auger -> UHECRs are largely nuclei Hillas cond.,  E>10 20 eV, Z=26 → L B > 10 43.5 erg/s (  2  -1 Much dimmer sources are allowed as UHECR sources Survival from photodisintegration (  A  ~n   A  (r/  < 1) Photon and matter density should be small enough One can build scenarios where UHE nuclei can survive GRB AGN Clusters Then, what is the consequence for detectability of neutrinos? (KM+ 08 PRD, Wang+ 08 ApJ) (e.g., Pe’er, KM, & Meszaros 09 PRD, Gopal-Krishna+ 10 ApJ) (Inoue+ 07, see also Kotera, Allard, KM+ 09, ApJ)

29 Waxman-Bahcall landmarks (Waxman & Bahcall 98 PRD) reasonable bounds of cumulative s from UHECR sources assumption : UHECR spectrum N(  p ) ∝  p -2 meson production efficiency f p  (< 1) → 1 “formal” limit (f p  ~ 0.2 n γ σ pγ (r/Γ)) flux  2 N (  ) ~ 0.25 f p   p 2 N(  p ) → (0.6-3)×10 -8 GeV cm -2 s -1 sr -1 Most theoretical predictions lie under WB landmarks IceCube reaches WB landmarks below MPR landmarks Landmarks from UHE Proton Sources

30 Landmarks from UHE Nuclei Sources Nucleus-survival requirement  A   n     r  < 1 res. approx. → f mes ~ (0.2/A) n  A  p  (r/  ) ~  A  (0.2  p  /  A  ) < 10 -3 f A   A   A  < 1 (most conservative) *non-applicable to non-UHECR sources (e.g., KM+ 08 for exception)  2 N (  )~0.25 f mes  2 N(  ) < (0.4-2)×10 -9 GeV cm -2 s -1 sr - 1 KM & Beacom, PRD, 81, 123001 (2010)

31 Summary s are expected for very powerful extragalactic CR sources Various possibilities, of course many uncertainties Sources may be seen if we are lucky -> big impacts! Some of the scenarios seem testable in the near future GRB prompt w. UHECR hypothesis (←CR loading must be large) Hadronic models for Fermi GRBs, flares… AGN blazars in the hadronic model, flares of GeV blazars, clusters of galaxies, specific models for Cen A… Magnetar Especially for UHECR sources, if UHE nuclei such as UHE iron ubiquitously survive in sources, A  s would be difficult to see by IceCube

32 Grazie! Thanks for organizers


Download ppt "NOW 2010 Kohta Murase (Center for Cosmology and AstroParticle Physics, Ohio State University, USA) High-energy neutrinos from extragalactic cosmic-ray."

Similar presentations


Ads by Google