Presentation is loading. Please wait.

Presentation is loading. Please wait.

Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.

Similar presentations


Presentation on theme: "Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID."— Presentation transcript:

1 Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID sources 2. A new mechanism for TeV  : Radio Isotope decay

2 Contents TeV unidentified (TeV unID) sources No counterpart, Origin unknown Gamma-Ray Burst (GRB) GRB-Supernova/Hypernova GRB/Hypernova remnant-TeV unID 1.  0 decay: N obs (HNR)~N obs (SNR) 2.  decay + e-Inverse Compton 3. Radio isotope (RI) decay

3 Multi-wavelength sky New wavelength ⇒ New sources (GRB, pulsar, …) Radio IR Opt X 

4 Increasing TeV sources “Kifune plot” Jim Hinton, rapporteurtalk, ICRC 2007 Most abundant category: unID! No clear counterparts at other wavelengths

5 HESS Galactic survey

6 Observed properties TeV unID Disk ⇒ Galactic origin Extended Aha+ 06

7 TeV  -ray Leptonic process (e with TeV) Synchrotron ⇒ X Inverse Compton ⇒  Hadronic process (p with TeV) pp ⇒  0 decay ⇒ 2  Synchrotron (X) Inverse Compton (  ) Electron acceleration CMB  Magnetic Field Proton acceleration Nucleus 00 22 ++

8 SNR Koyama+ 05Bamba+ 03 Aha+ 04 Hwang+ 04 Most likely Galactic CR origin Also likely TeV  sources CR acceleration at SN shock

9 Suzaku upper limit Matsumoto+ 07 Suzaku⇒Strong X-ray upper limit F TeV /F X >50 ⇒ Leptonic × Hadronic ○ ⇒ Young SNR × TeV  X-ray Bamba+ 07

10 In old SNRs,  max,electron is low but  0  flux~const ⇒ F TeV /F X >100 Old SNR? But, Rate~1/100yr⇒10 3 SNR ⇔ 10 unID Yamazaki+ 06 TeV X

11 GRB = Rare SN >msec Luminosity Time ~ 1000 events/yr isotropic ~ 200 keV, nonthermal s ~ 10 3 s : Short, Long GRB Afterglow X Opt Radio The most luminous objects ~10 51 erg/s Redshift SN ~1day

12 Standard model Central Engine optically thick  → e + e  SN? Internal shock ? ISM External shock  >100 光度 GRB 時間 Afterglow Kinetic energy ↓ Shock dissipation

13 GRB-SN Bloom+(99) Type Ic spectrum Hjorth+(03) ⇒ GRB is associated with SN Ibc Afterglow Light curve

14 Collapsar Jet breaks out the massive stellar envelope

15 GRB/Hypernova E HN ~10 52 erg R SN ~1/100yr R HN ~1/10 4 yr R GRB ~1/10 5 yr t age ~10 5 yr ⇒ N HN ~10~N unID Nomoto+ Hypernove (hyper-energetic SNe) occur more frequently than GRBs

16 Old GRB/HN remnant  -ray Flux for pp→  0 →2  Just by scaling the SNR calculations CR energy~10 51 erg~10%x10 52 erg ~F unID Flux: t-independent ⇒ Old ones are dominated ⇒ leptonic emission is weak ( low  max,e ) ⇒ unID Number R~1/10 4 yr t age ~10 5 yr ⇒ N HN ~10~N unID Size

17 Observed number ratio Observed #(HNR)~Observed #(SNR) ① ~10 times energy ⇒ d max ∝ E 1/2 ② Sensitivity to extended sources ∝ (size) ∝ d -1 ⇒ d max ∝ E ⇒ Volume ∝ d max 2 ∝ E 2 Observable SNRs are nearby ⇒ Size is too large?

18 GRB jet-Cosmic Ray GRB R B Hillas diagram E { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/4207991/14/slides/slide_17.jpg", "name": "GRB jet-Cosmic Ray GRB R B Hillas diagram E

19 GRB remnant (GRBR) Ayal & Piran 01 After non-rela ⇒ Jet→Sphere ⇒ GRBR~SNR hydrodynamically (cf., R~E 1/5 ) Metal distribution could be different Loeb & Perna 98 Wick, Dermer & Atoyan 04 Dermer & Atoyan 06

20 1.  0 decay Relativistic souces ⇒ less low E ⇒ Low GeV & Radio emission SNR All Atoyan, Buckley & Krawczynski 06 HESS J

21 2.  decay – e-IC p→n+p→n+  p ~10 16  7 eV  (CMB, …) t decay ~900s KI, Kobayashi & Mészáros 04 Energy fraction of TeV 

22 Unique morphology Elongated emission outside SNR Age/Energy dependent profile Less low E & radio KI, Kobayashi & Mészáros 04 SNR W49B

23 Candidate? Aha+ 06

24 3. Radio isotope (RI) decay No need for target  and matter 56 Ni ⇐ SN light curve ~2MeV Could be shock-accelerated before decay (by reverse shock?) 1998bw: M( 56 Ni)~0.4M ◉

25 SN light & RI decay 56 Ni, 56 Co decay ⇒SN light curve NS/BH Complete Si burning⇒ 56 Ni Fall back to central BH/NS Nomoto+07

26 Woosley & Zhang 07Mazzali+05 O Fe( 56 Ni)

27 RI decay model SNR disappears 56 Co case GRB jet OK 56 Co energy ~energetic GRB Energy fraction of TeV 

28 Spectrum (2-p)-1 F Exp. cutoff ~TeV t decay ~10 6  6 yr   ~TeV  6 ~GeV Already decayedNow decaying t

29 RI model spectrum  -2 nd e + X Radio 10 5 yr

30 Fe ? Depth of air shower maximum Auger

31 Photo-disintegration Wang, Razzaque & Mészáros 07 Ni/Co/Fe can survive photo-disintegration (⇔ Fe UHECR implied by Auger X max ) Murase,KI+08

32 Model identificaion Neutrino  Morphology 00  No (Already decayed) RI

33 Summary TeV unID sources Dominant in TeV sky, Origin unknown Old GRB/Hypernova remnant N obs (HNR)~N obs (SNR) SNR may be more nearby and extended BH in unID? A new mechanism for  -ray production Decay of Accelerated Radio Isotope (RI) No need for target matter or photon


Download ppt "Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID."

Similar presentations


Ads by Google