Presentation is loading. Please wait.

Presentation is loading. Please wait.

The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.

Similar presentations


Presentation on theme: "The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007."— Presentation transcript:

1 The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007

2 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 2 Outline Introduction The detector Results Future

3 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 3 A “pragmatic” introduction >.. AA M. t N Bkg.  E ln2. N k C.L. (y) M: masse (g)  : efficiency K C.L. : Confidence level N: Avogadro number t: time (y) N Bckg : Background events (keV -1.g -1.y -1 )  E: energy resolution (keV)   NEMO3 philosophy: - Isotope choice flexibility - Focus on lowering N Bkg - Search for any lepton violating process including with continuum spectrum (e.g. Majoron) Detect  topology!

4 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 4 NEMO3 (Neutrino Ettore Majorana Observatory) 50 physicists, 17 institutions

5 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 5 3 m 4 m B (25 G) 20 sectors Source : 10 kg of  isotopes cylindrical, S = 20 m 2, e ~ 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water  boron) Particle ID: e , e ,  and  The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e.

6 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 6  isotope foils scintillators PMTs Calibration tube Cathode rings Wire chamber

7 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 7 100 Mo 6.914 kg Q  = 3034 keV 82 Se 0.932 kg Q  = 2995 keV 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV Cu 621 g 48 Ca 7.0 g Q  = 4272 keV nat Te 491 g 130 Te 454 g Q  = 2529 keV  measurement External bkg measurement  search (Enriched isotopes produced by centrifugation in Russia)  decay isotopes in NEMO-3 detector

8 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 8 100 Mo foils Scintillator + PMT Longitudinal view Transverse view Vertex of the e  e  emission  event selection: 2 tracks with Q<0 (right curvature for electrons) 2 PMT hits associated with tracks Common vertex Internal event from the foil (ToF cut) No PMT hits without tracks (  rejection) No delayed short tracks (  rejection from 214 Bi- 214 Po)

9 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 9 208 Tl: Analysis channels: (e -,2  ), (e -,3  ) events coming from foils 214 Bi Analysis channel: (e -, ,  ) events from gas(Radon) or from foil NEMO 3 can measure each component of its background by using different analysis channels Internal background

10 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 10 Crossing electron > 4 MeV e.g neutron capture in Cu Electron – positron pair. Rejection with magnetic field External background Control and reject backgrounds Unprecedented understanding of backgrounds

11 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 11 1 ton of charcoal @ –50 o C, 9 bars air flux = 150 m 3 /h Input: A( 222 Rn) 15 Bq/m 3 Output: A( 222 Rn) < 15 mBq/m 3 !!! reduction factor of 1000 Phase I : February 2003 – September 2004 (radon background in data) ~ 1 0 -like event/y/kg with 2.8 < E 1 +E 2 < 3.2 MeV Radon trapping facility Inside the NEMO 3 tent: factor of 100 – 300 Inside NEMO 3: almost factor of 10 A( 222 Rn)  3 mBq/m 3 Phase II : since October 2004 (radon level reduced by a factor of 10)

12 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 12 NEMO3 Results

13 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 13 Cos(  ) Angular distribution 219 000 events 6914 g 389 days S/B = 40 NEMO-3 100 Mo E 1 + E 2 (MeV) Sum energy spectrum 219 000 events 6914 g 389 days S/B = 40 NEMO-3 100 Mo Background subtracted Data 2  2 Monte Carlo Data 2  2 Monte Carlo Background subtracted «  factory» → tool for precision test T 1/2 (  ) = 7.11  0.02 (stat)  0.54 (syst)  10 18 years 12000 10000 8000 6000 4000 2000 0 Number of events 12000 10000 8000 6000 4000 2000 0 Number of events/0.05 MeV 100 Mo  2 results Phys. Rev. Lett. 95 182302 (2005) Phase 1: Feb. 2003 – Dec. 2004 “High Radon”

14 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 14 932 g 389 days 2750 events S/B = 4 48 Ca 82 Se Preliminary results for ~360 d Phase I data. Additional statistics are being analysed and to be published soon. 82 Se T 1/2 = 9.6  0.3 (stat)  1.0 (syst)  10 19 y 116 Cd T 1/2 = 2.8  0.1 (stat)  0.3 (syst)  10 19 y 150 Nd T 1/2 = 9.7  0.7 (stat)  1.0 (syst)  10 18 y 96 Zr T 1/2 = 2.0  0.3 (stat)  0.2 (syst)  10 19 y 48 Ca T 1/2 = 3.9  0.7 (stat)  0.6 (syst)  10 19 y Background subtracted  2 results with other nuclei  is important: 1) Experimental input to NME calculation (see next slide) 2) Ultimate background for  2) Ultimate background for 

15 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 15 g pp fixed from experimentally measured M 2 Error bars are from experimental errors on T 1/2 2 V.A. Rodin et al., Nucl. Phys. A 766, 107 (2006) - Erratum HSD, higher levels contribute to the decay SSD, 1  level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100 Mo 00 100 Tc 11 HSD  2 /ndf = 254 / 42 SSD  2 /ndf = 42,3 / 42 SSD mechanism established from 100 Mo single e- spectra 0+0+ 100 Ru

16 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 16 New results: 130 Te  S + B = 607 events 109 events 454 g 534 days S/B = 0.25 Preliminary result: 130 Te:T 1/2 = [ 7.6 ± 1.5 (stat) ± 0.8 (syst) ]  10 20 y Previous indication on effect from a direct experiment (6.1 ± 1.4 (syst) ± 2.9 3.4 ) x 10 20 years (Arnaboldi 2003)

17 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 17 How constant are coupling constants?  is sensitive to G f variations (~G f 4 )  decay was first detected in geochemical experiments ( 130 Te  130 Xe) Daughter isotope ( 130 Xe) extracted from an old mineral and number of atoms counted old minerals (~10 6 – 10 9 yr) extractor and mass-spectrometer 130 Te geochemical measurements: (25 ± 2) x 10 20 yrs (Kirsten 83) (27 ± 2) x 10 20 yrs (Bernatowicz 93) (8 ± 1) x 10 20 yrs (Manuel 91, Takaoka 96) “old” samples (~10 9 yrs) “new” samples (few x 10 6 yrs) NEMO3 result (“present”  rate): (7.6 ± 1.7) x 10 20 yrs Difference between  rates in past and present due to time dependence of Fermi constant??? Suggestion: Carry out geochemical isotope analyses with 100 Mo  100 Ru, 96 Zr  96 Mo (daughter not gas) etc and compare with direct measurements (precise NEMO3 results available).

18 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 18 Event topology: 0 1 + : 2e - + 2  in time & energy and TOF cuts 2 1 + : 2e - + 1  in time & energy and TOF cuts 100 Mo 0+0+ 2 1 + (540 keV) 0 1 + (1130 keV) 4 1 + (1227 keV) 0 + (g.s.) 100 Ru 2 2 + (1362 keV) 3034 keV 11 22 334.3 days of data (Phase I) 100 Mo  decay to excited states Decay to the excited 0 + state (1130keV) of 100 Ru T 1/2 = 5.7 +1.3 -0.9 (stat)  0.8 (syst)  10 20 y Nuclear Physics A781 (2006) 209-226. Important for NME calculations!

19 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 19  of 100 Mo and 82 Se 693 days of data Phase I + Phase II 693 days of data Phase I + Phase II 100 Mo 82 Se T 1/2 > 5.8 × 10 23 y @ 90% C.L.  m  < (0.8 – 1.3) eV [1-3] T 1/2 > 5.8 × 10 23 y @ 90% C.L.  m  < (0.8 – 1.3) eV [1-3] T 1/2 > 2.1 × 10 23 y @ 90% C.L.  m  < (1.4 – 2.2) eV [1-3] T 1/2 > 2.1 × 10 23 y @ 90% C.L.  m  < (1.4 – 2.2) eV [1-3] Both simple counting and likelihood methods are consistent [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315. [3] V.A.Rodin et al., Nucl.Phys. A 793 (2007) 213. [5] M.Aunola et al., Nucl.Phys. A 463 (1998) 207. NME: Data until spring 2006

20 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 20  Search. Future. Collaboration decided to perform blind analysis. Plan to open the box and update the results ~ in April 2008 (in time for Neutrino’08) and once again at the end of the experiment ~ early 2010. expected sensitivities in 2010: 100 Mo T 1/2 (0  ) > 2 × 10 24 y (90 % CL)  m  < (0.4 – 0.7) eV 82 Se T 1/2 (0  ) > 8 × 10 23 y (90 % CL)  m  < (0.7 – 1.1) eV see previous slide for NME used

21 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 21 V+A *n=1 **n=2 **n=3 **n=7 ** Mo >3.2∙10 23 <1.8∙10 -6 >2.7∙10 22 g ee <(0.4-1.8)∙10 -4 >1.7∙10 22 >1.0∙10 22 >7∙10 19 Se >1.2∙10 23  2.8∙10 -6 >1.5∙10 22 g ee <(0.7-1.9)∙10 -4 >6.0∙10 21 >3.1∙10 21 >5.0∙10 2 0 * PI+PII data ** PI data, R.Arnold et al. Nucl. Phys. A765 (2006) 483 World’s best limits n: spectral index, limits on half-life in years Other  mechanisms Majoron emission

22 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 22 Summary NEMO3 – unique approach combining tracking and calorimetry Unprecedented understanding of backgrounds  factory: precise high statistic measurement of 7 isotopes (out of 9 main candidates!). 5 publications in preparation – Experimental input for NME calculations – Understanding  as background

23 21/11/2007 R. Saakyan: NEMO3, IoP DBD meeting, Manchester 23 Summary(2) < 0.8-1.3 eV so far. Blind analysis underway. Worlds best limits on other  modes (V+A, Majoron) Data taking until end 2009. < 0.4-0.7 eV. Partly cover Klapdor’s claim, discovery possible! Ideal test bench for future generation  experiments. Exciting times. Watch this space!


Download ppt "The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007."

Similar presentations


Ads by Google