Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dr. Mohamed Seyam PhD. PT. Assistant Professor Of Physical Therapy

Similar presentations


Presentation on theme: "Dr. Mohamed Seyam PhD. PT. Assistant Professor Of Physical Therapy"— Presentation transcript:

1 Dr. Mohamed Seyam PhD. PT. Assistant Professor Of Physical Therapy
AEROBIC EXERCISE Dr. Mohamed Seyam PhD. PT. Assistant Professor Of Physical Therapy

2 COMPONENTS OF AN EXERCISE TRAINING SESSION
To maximize safety and effectiveness, the format of each exercise session should include Warm-up conditioning Cool-down A comprehensive exercise program includes both aerobic and resistance training, flexibility exercises, and guidance about recreational activities.

3 Warm-Up period of 5 to 10 minutes
low-intensity large muscle activity, such as low-intensity callisthenic-type exercise or aerobic activity and gentle stretching, facilitates the transition from rest to exercise, increasing heart rate (HR), augmenting blood flow, increasing oxygen uptake, reduce the risk of musculoskeletal injury by increasing connective tissue distensibility, improving joint range of motion and function, and enhancing muscular performance. patients with heart disease may exhibit delayed adaptive circulatory responses to the onset of exercise, and thus may require longer warm-up periods.

4 Conditioning The conditioning phase includes endurance,
resistance, and flexibility exercises, parts of which may be performed on different days.

5 Methods of Aerobic Exercise
There are four methods of training that challenge the aerobic system: Continuous. Interval (work relief). Circuit. Circuit interval.

6 Cooldown period of 5 to 10 minutes provides for
gradual physiological recovery after aerobic exercise, which allows HR and BP to return to near-resting values, maintains adequate venous return, f acilitates the dissipation of body heat and removal of lactic acid, and attenuates the post-exercise rise in plasma catecholamines (which may induce ventricular arrhythmias). Cooldown is critical for exercise safety for both healthy individuals and those with disease, as it reduces the risk of postexercise hypotension and myocardial ischemia. Low-intensity exercise (e.g., slow walking or cycling) and stretching are typical modes of cooldown exercise.

7 VO2 max Units liters/minute or ml/minute (absolute)
ml/kg/min (relative to body weight) Range 15 ml/kg/min (sedentary with disease) to 75 ml/kg/min (young endurance runner). Women about 10-20% lower than men

8 Methods of Determining VO2 max
Submaximally Maximally Karvonen method for calculate THR incremental method for calculate THR

9 General Guidelines Measure the subject’s HR and BP and RPE at regular intervals (near the end of each stage [HR, BP, RPE] or every minute [HR]) All testing begins with a 2-3 min warm-up Cool- down at a low intensity for at least 4 minutes - continue measuring HR, BP and RPE increase intensity in MET increments closely observe subject for contraindications

10 Submaximal Protocols Oxygen consumption for any given Work Load does not vary between subjects The slope of the line is about the same for any two given subjects The rate of increase in O2 consumption with increasing Work Load does not vary between subjects

11 Bruce Treadmill Protocol
Stage 1 Increase grade to 10% 3 minutes long Measure HR at end of each minute and BP at end of each stage

12 Bruce Treadmill Protocol
The objective is to reach a steady state HR between 115 and 155 bpm (usually occurs during the first 6 minutes of exercise or by the end of the 2nd stage) Once subject reaches proper HR terminate the test at the end of that stage Reduce treadmill speed to 1.7mph and 5% grade and cool-down for 4 minutes. VO2 is estimated from the last minute of a fully completed stage

13 Bruce Protocol ( Maximal Table)
METS MPH km/h % grade Minutes Stage 5 1.7 2.7 10 3 1 7 2.5 4.0 12 2 3.4 5.4 14 13 4.2 6.7 16 4 15 5.0 8.0 18 5.5 8.8 20 6 6.0 9.6 22

14 Treadmill Protocol Males Females
Calculate VO2 from the gender specific equations Males Men: VO2max (ml/kg/min) = 2.94 x T Females Women: VO2max (ml/kg/min) = 2.94 x T

15 Modified Bruce Protocol
Used on diseased and elderly populations. The modified Bruce protocol starts at a lower workload than the standard test and is typically used for elderly or sedentary patients. The first two stages of the modified bruce test are performed at a 1.7 mph and 0% grade and 1.7 mph and 5% grade, The third stage corresponds to the first stage of the standard bruce test protocol as listed above.

16 Modified Bruce Protocol ( Submaximal Table)
METS MPH km/h % grade Minutes Stage 3 1.7 2.7 1 4 5 2 10 7 2.5 4.0 12 3.4 5.4 14 13 4.2 6.7 16 6 15 5.0 8.0 18

17 Treadmill Protocol Protocols should be individualized
Test time should ideally be 8-21 min Increments of W/min or 1-3%/min grade can be used for the elderly

18 Advantages of Submaximal Testing
Safer Don’t need highly trained personnel No physician supervision required (if symptom and disease free) Controlled pace (motivation not a factor) Quick assessment

19 Disadvantages of Submaximal Testing
1. VO2 max is error rate of (10-20%) 2. Don’t get a measure of true maximal HR Estimates of max HR using 220-age can vary by +15 bpm for individuals not directly measured (of the same age).

20 Advantages and Disadvantages of a Maximal Test
1. More accurate Disadvantages 1. Motivation is a factor 2. More risk involved 3. Time 4. Cost of equipment (if using metabolic cart)

21 Karvonen method for calculate THR
MHR = 220 – AGE MHR = (0.67 x age) MOR ACCURATE THR = THR = ((HRmax − HRrest) × %Intensity) + HRrest


Download ppt "Dr. Mohamed Seyam PhD. PT. Assistant Professor Of Physical Therapy"

Similar presentations


Ads by Google