Presentation is loading. Please wait.

Presentation is loading. Please wait.

When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in.

Similar presentations


Presentation on theme: "When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in."— Presentation transcript:

1 When a star dies…

2 Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in extreme condition.

3 Why compact? It is all about balance! Degenerate pressure

4 How are they formed? End stage of stars Mass determines fate

5

6 Low mass stars Sun-like stars Massive stars Low mass stars Sun-like stars Massive stars Low mass stars Sun-like stars Massive stars It’s all about mass

7 Red Giants Sun-like stars

8 Planetary Nebula 1 light yr across UV from the white central dwarf Emission lines

9 M57 Blue SnowballCat’s Eye DumbbellHelix

10 White Dwarfs Snow White and the Seven Dwarfs

11 White Dwarfs =>  10 6 g/cm 3 Mass ~ M  (but <1.4) Radius ~ R 

12 White Dwarfs ~100,000K when born Blackbody peaks @ UV Yes, it’s organic! -- Crystalline carbon, oxygen like diamond, but 3,000 times harder So? Type Ia supernova

13 Example: Sirius B Discovered in 1862 m v =8.3 Surface temperature 25,000K Separation: 20AU Orbital period: 50 yrs

14 Sirius B

15 Death of Massive Stars

16 Supernova (Type II) E tot ~10 53 ergs (99% neutrinos) E kin ~ 10 51 ergs E visible ~10 49 ergs Ni-56, Co-56 Outshine the host galaxy! Core  NS/BH Not type I!

17 Example: SN 1987a movie

18 Movies x3

19 Neutron Stars Predicted by Baade & Zwicky (1934) Densest object that has surface M ~ 1.4 M  ; R~10 km Giant nucleus A=10 57 Degenerate neutron pressure Strong magnetic field ~ 10 12 gauss (H: 160eV) Strong surface gravity ~ 10 11 g Surface temperature ~ 10 6 K

20 How Compact? Or 466,000 x

21 How Compact? M ~ 1.4 M  ; R~10 km =>  10 14 g/cm 3 Similar to nucleus: 10 -24 g/(10 13 cm) 3 World Population: ~10 9

22 Mass-radius Relation

23 Structure Atmosphere: ~cm Crust: Fe Neutron drip: 4x10 11 g/cm 3 Superfluidity Nuclear density: 2.8x10 14 g/cm 3 Core: quark matter?

24 Pulsar LGM: Jocelyn Bell (1967) Period 1.6 ms to 8s Are pulsars neutron stars? –Timescale (< 500km) –Good clocks

25 Blackbody + Power-law Where’s the energy from? Rotating magnet Polar cap Outer gap Emission

26 Example: Crab Pulsar SN1054 –guest star P=33ms Jet+torus (movies)

27 Research Topics Quark matter? Cooling Atmosphere Gamma-ray emission Magnetars: 10 15 gauss AXP VHE (>100Gev) from SNR

28 URCA Process Cooling

29 Quark Stars? Stable quark matter (Witten 1984) 3C 58 ? RXJ 1856.5-3754 ?

30

31 GRB Energy scale: keV – MeV Total energy: 10 52 ~10 54 erg Timescale: ms – ks

32 Social Behavior Double NS/ Pulsar Millisecond (recycled) pulsars HMXBs LMXBs QPO

33 Double NS Double NS: PSR B1913+16 –Test of GR (93’ Nobel) Double pulsars: PSR J0737-3039 –GR, magnetosphere –movie

34 QPO Quasi-periodic oscillations

35 Reference Shapiro & Teukolsky --Black holes, White dwarfs and Neutron Stars – the Physics of Compact Objects


Download ppt "When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in."

Similar presentations


Ads by Google