Presentation is loading. Please wait.

Presentation is loading. Please wait.

An Najah National University Telecommunication Engineering Department

Similar presentations


Presentation on theme: "An Najah National University Telecommunication Engineering Department"— Presentation transcript:

1 An Najah National University Telecommunication Engineering Department
Digital Communications 69342 Digital Modulation Dr. Allam Mousa Sec3_Dig_Modu

2 Chapter 12 / Tomas : Digital Modulation AM
FM are replaced by Digital Modulation . PM Digital communication system sare ; Easy for process. Easy for multiplexing. Noise immunity . A/D D/A Analog Or digital signal Destination Channel Sec3_Dig_Modu

3 1 1 1 ASK PSK FSK Sec3_Dig_Modu

4 Digital Radio vs. Analog Radio
FSK &PSK signals have a constant envelope. So they are preferred to ASK signals for passband data transmission over nonlinear channels. *phase –recovery circuit : ensures that oscillator supplying the locally generated carrier wave in the receiver is synchronized (frequency and phase ) to the oscillator at the transmitter. If the receiver has a phase-recovery circuit coherent digital mod . If the receiver has a no phase-recovery circuit non coherent digital mod . Digital Radio vs. Analog Radio 1) In digital radio the modulating signals are digital pulses (analog waveform in analog mod ). 2) Different modulation techniques are used in digital radio . But digital radio use analog carriers just like conventional systems. Sec3_Dig_Modu

5 Shannon Limit for Information Capacity .
C=B log (1+S/N) bits/sec . # of independent symbols that can be carried out through the system in a given time. C=B log (1+SNR). =3.32 B log (1+ SNR). 2 2 10 Example : Consider a standard voice-band communication channel with SNR of 1000 (3 dB) And a bandwidth of 2.7 kHz . Find the channel capacity ? Solution : C=B log (1+SNR)=2. 71 log (1+1000) C= 26.9 kbps The 2.7kHz bandwidth will carry 26.9 kbps . ((this can not be done with a binary system )) 2 2 Sec3_Dig_Modu

6 To acheive kps through 2.7kHz then each symbol transmitted must contain more thane one bit of information . i.e , to acheive the Shannon limit (C) then digital transmission systems that have more than two output conditions ( symbols) must be used . Sec3_Dig_Modu

7 Digital Amplitude Modulation
For AM V(t) = A/2 [1+ m(t)] cos ( 2* pi * fc*t). modulating signal carrier signal Let m(t)=+1 (binary) on – off-keying . (Acos(2*pi*fc*t) OR zero ook modulation . V(t) = Am(t) cos(2*pi*fc*t) If m(t) = 0 or 1 ook Double side band _ dsb DSB OOK Sec3_Dig_Modu

8 Frequency Shift Keying
v(t) = Vc cos [(wc +( Vm (t) w )/2)t ] v(t): binary FSK waveform . Vc: peak unmodulated carrier amplitude. wc: radian carrier frequency . Vm(t): binary digital modulating signal. w : change in radian output frequency . Binary input 1 1 Analog output Sec3_Dig_Modu fs fm fs fm

9 fs : space frequency . fm > fs fm :mark frequency . freq fm fs Time
Sec3_Dig_Modu Binary FSK

10 Bandwidth Consideration of FSK
FSK modulator (VCO) Binary input Analog output tb 1 1 1 1 1 1 2T1 T1 fa=fb/2 f=fb/4 Highest fundemental frequency Occurs when alternative 1/0 . Sec3_Dig_Modu

11 fb : input bit rate (bps). tb : time of one bit = 1/fb .
T1 : period of shortest cycle . 1/T1 : fundamental frequency of binary, square wave. Fastest input rate when the input is a series of alternating 1s& 0s.(square wave ) . Highest modulating frequency = 0.5 input rate (fa = fb/2). Converting pulses (bit-rate) into sin wa t Then m(t) c(t) = Sin wa t sin wc t Sec3_Dig_Modu

12 Peak frequency deviation f f = fm – fs /2 = 1/4tb (Hz . Minimum ).
1 1 2 f FSK modulator fs=fc- f fm=fc+ f tb fc Carrier freq Peak frequency deviation f f = fm – fs /2 = 1/4tb (Hz . Minimum ). fs = fc f = fc – 1/4tb fm = fc + f = fc+ 1/4tb For FSK : B.W=( fm+ 1/tb) – (fs – 1/tb) = fm – fs +2/tb = 2( f + 1/tb ) . B.W=2( f+ 1/tb) FSK frequency spectrum (pulse sinusoidal wave have freq. spectrum that or ((sin x)/x) 1/tb 1/tb fc fm+1/tb fm fs – 1/tb fs Sec3_Dig_Modu

13 2) With FSK , baud is equal to he input bit rate = 2000 bits/sec
Example 12 – 1 : Determine the bandwidth & baud for an FSK signal with a mark frequency of 51 kHz & a space frequency of 49 kHz , and a bit of 2 kbps . Solution : B.W = fm – fs + 2/tb tb= 1/fb = 1/2000 = 0.5 msec. B.W= – /(0.5*10^-3) = 6000Hz . 2) With FSK , baud is equal to he input bit rate = 2000 bits/sec Sec3_Dig_Modu

14 Non coherent FSK demodulator BPF
FSK Receiver Envelop detector BPF fs FSK Input - + Data output Non coherent FSK demodulator Envelop detector BPF fm carrier BPF FSK input - + Data output BPF coherent FSK demodulator Sec3_Dig_Modu carrier

15 Fig. PLL-FSK demodulator most common
Analog FSK in Dc-error voltage d Binary data output Phase compensator amp VCO PLL Fig. PLL-FSK demodulator most common fs fm +V 0V -V Sec3_Dig_Modu

16 Minimum Shift –Keying MSK
Similar to FSK but fm & fs = n fb / 2 , (n is odd) fs & fb = n fb /n , (n is odd) Phase discontinuties fs = n fb /2 Fig . Non continous FSK waveform (not MSK ) This may creat problems error MSK is form of continues – phase Frequency shift keying (CPFSK) Sec3_Dig_Modu

17 Fig . Continuous-phase MSK waveform .( error is less)
Logic 1 Logic 0 fb = 1kbps MSK Smooth continuoes transition fs fm Fig . Continuous-phase MSK waveform .( error is less) fm : mark frequency . fm = 5 fb /2 = 5*1000/ 2 =2500 Hz . fs = 3 fb / 2 = 3*1000 /2 = 1500Hz . 5&3 not necessary to equal . Sec3_Dig_Modu

18 Phase Shift Keying (PSK).
Angle – modulated , constant – amplitude digital modulation . Analog input PM Limited number of output phase Binary digital signal PSK Binary PSK (BPSK) two phases also called phase reversal keying (PRK) bi phase modulation ( ) ? tb Binary input 1 1 Time Sin wc t Sin wc t Sin wc t Sin wc t BPSK Output Time Degree Radian pi Sec3_Dig_Modu

19 Balance (product) modulator Reference carrier oscillator
BPSK Transmitter +1V -1V Balance (product) modulator Reference carrier oscillator BPF Analog PSK output Binary data in X Y X.Y 1 OUT PUT IS THE PRODUCT X.Y FIG. Simplified block diagram of a BPSK Tx . Modulator Sec3_Dig_Modu

20 Bandwidth Consideration of BPSK
+1V -1V Balance (product) modulator Reference carrier oscillator BPF Analog PSK output Binary data in X Y X.Y 1 out put = sin(wa t) sin(wc t) = 0.5 cos(wc – wa)t – 0.5 cos(wc+wa)t . Widest output BW occurs when the input binary data are alternating. The fundamental frequency (fa) of an alternating 1/0 bit sequence is fa=fb/2 Fundamental Freq.of binary modulating signal Un modulated carrier Sec3_Dig_Modu

21 The minimum double-side Nyquist bandwidth (f N ) is
wN = 2*pi*fN = 2wa =2*pi*fa . wc – wa wc +wa -wc +wa [wc – wa ] SO, wN  2 wa because fa =fb/ f N = 2(fb/2) =fb Minimum B.W & BPSK Sec3_Dig_Modu

22 FIG. output vs. time for BPSK
tb Binary input 1 1 Time Sin wc t Sin wc t Sin wc t Sin wc t BPSK Output Time Degree Radian pi pi FIG. output vs. time for BPSK Sec3_Dig_Modu

23 Out put = sin(wa t) sin(wc t). = sin( 2*pi*fa *t) sin(2*pi*fc*t)
Example 12-2 : For a BPK modulator with a carrier frequency of 70 MHz & an input bit rate of 10 Mbps , determine the maximum & minimum upper & lower side frequencies , draw the output spectrum .determine the minimum Nyquist bandwidth , and calculate the baud. Solution : fc=70 MHz , fb= 10Mbps . f N = fb fa = f N /2 = FB/2 = 5MHz . Out put = sin(wa t) sin(wc t). = sin( 2*pi*fa *t) sin(2*pi*fc*t) = sin( 2*pi*5 *t) sin(2*pi*70*t) = 0.5 cos(2*pi*(70-5)MHz*t) – 0.5 cos(2*pi*(70+5)MHz*t) lower side frequency upper side frequency Lower side frequency LSF = = 65 MHz. Maximum side frequency MSF = = 75 MHz . Out put spectrum fc is suppressed . B.W=10MHz Sec3_Dig_Modu fc=

24 Minimum Nyquist bandwidth fN = 75 – 65 = 10 MHz = fb
Or fN = fb = 10MHz . Baud = fb = 10Mbps . B.W =fb for BPSK . Sec3_Dig_Modu

25 BPSK Receiver fc <<2wc Balance Modulator X - Binary data out
+sin(wc t) Balance Modulator X - Binary data out BPSK input LPF sin(wc t) Coherent Carrier Recovery FIG . BPSK R x BPSK MOD BPSK MOD Logic +1 Logic 0 -sin(wc t) +sin(wc t) Tx Tx Demo +sin(wc t) + 0.5 Logic 1 Rx Logic 0 AND -sin(wc t) Demo - 0.5 Sec3_Dig_Modu Rx

26 sin wc t . Sin wc t out put of balanced mod.
At point X : sin wc t . Sin wc t out put of balanced mod. Out 1 = sin wc t =0.5 (1-cos2wc t ) = Out 0 = -sin wc t = -0.5 (1-cos 2wc t )= Filtered by the LPF 2 Filtered by the LPF 2 Sec3_Dig_Modu

27 BFSK & BPSK are M-ary systems with M=2 .
M- aRY Encoding Binary FSK & binary PSK are binary systems (there are only two possible output conditions ) 0 & 1 . BFSK & BPSK are M-ary systems with M=2 . it is better to encode at a level higher than binary ( M>2 ). N = log M N: #of bits . M: # of output conditions possible N bits . 2 Input Modulation output If 2-bits were allowed to enter a modulator before the output were allowed to change , 2 = log M & M = 2 =4 2-bits 2 1 N= M=2 = 2 N= M=2 = 4 N= M=2 = 8 2 2 1 2 3 4 4- different Output conditions. 3 Sec3_Dig_Modu

28 Quaternary Phase Shift Keying (QPSK) = M=4
QASK angle-modulated , constant – amplitude. Digital modulation . QPSK one carrier & 4 different phases . 2-bits 4 input conditions QPSK 4 output phases 2 N M = 2 = 2 = 4 dibits bits groups . 2-bits input generate 1 output out of 4 possible outputs phases . Baud rate = 0.5 input rate (for QPSK). baud rate = bit rate for BPSK . Output rate Sec3_Dig_Modu

29 Reference carrier ossilator
QPSK transmitter I- ch (fb/2) +sin(wc t) - Binary input data Balanced modulator Logic 1=+1v Logic 0=-1v fb Input buffer I Q Reference carrier ossilator Linear summer Sin(wc t) BPF 90 phase shift fb/2 Bit clock /2 cos(wc t) Q- ch (fb/2) Balanced modulator +cos(wc t) - Fig.QPSK modulator Sec3_Dig_Modu

30 2-bits are serially inputted then 1 output .
QPSK BPSK Combined in parallel . Possible outputs are +sin wc t + cos wc t +sin wc t - cos wc t -sin wc t + cos wc t -sin wc t - cos wc t Sec3_Dig_Modu

31 REMEMBER THAT Acos x + B sin x = A^2 + B^2 tan (-B/A) For Q=0 , I=0
Example 12-3 For the QPSK modulator. Construct the truth table, phasor diagram and constellation diagram . Solution : REMEMBER THAT Acos x + B sin x = A^2 + B^2 tan (-B/A) For Q=0 , I=0 I-ch balanced modulator output is -sin wc t Q-ch balanced modulator output is -cos wc t Output is -sinwc t – cos wc t Out put due to (0,0) is tan (-1) = = sin (wc t – 135 ) . Similarly -1 -1 Q I Q I QPSK output QPSK TRUTH TABLE Sec3_Dig_Modu

32 Fig. constellation diagram
Q I Q I coswc t coswc t –sinwc t Sin(wc t+135) Cos wc t coswc t+ sinwc t Sinew t+45) 10 11 sin wc t Sinwc t 0 reference 00 01 Q I Q I -cows t +since t sinew t -45) -cows t –since t sinew t-135) Fig. constellation diagram Fig. phasor diagram All have same amplitude Sec3_Dig_Modu

33 Fig. output phases –versus-time relation ship for a QPSK modulator
1) QPSK outputs have the same amplitude . 2) angular separation between any two adjacent phasors in QPSK is 90 degree we can correct up to + 45 shift in phase _ Q I Q I Q I Q I di bit input QPSK output phases Fig. output phases –versus-time relation ship for a QPSK modulator Sec3_Dig_Modu

34 Bandwidth Consideration for QPSK
I-ch fb/2 & TbI =2Tbin input data fb b/s Q-ch fb/2 & Tba =2Tbin Stretching bit Input data is divided into two channels B.W Compression _ I-ch fb/2 +1 Balanced modulator - +Sinwc t Binary input data fb Q I Sinwc t coswc t _ +1 +coswc t fb/2 Q-ch - Balanced modulator Sec3_Dig_Modu

35 FIG. B.W consideration of a QPSK modulator .
I Q I Q I Q I Q I Q I Input data fb I –ch fb/2 Q –ch fb/2 FIG. B.W consideration of a QPSK modulator . The bit stretched to twice the input bit length .(B.W=1/T ; T ,B.W ) Baud rate :fastest output rate of change =0.5 input bit rate for(QPSK). =same input bit rate for (BPSK). Sec3_Dig_Modu

36 The output of the balanced modulator (for QPSK) is
Output = sin(wa t) sin (wc t) Where wa t = 2*pi*fa*t = 2*pi*(fb/4)*t modulating phase . wc t= 2*pi*fc*t Unmodulated carrier phase . output =sin(2*pi*(fb/4)*t) sin(2*pi*fc*t). = 0.5 cos 2*pi*(fc – fb/4)t – 0.5 cos (2*pi*(fc + fb/4)t Output frequency spectrum extends from fc- fb/4 to fc + fb/4 . Minimum B.W f N = fmax – fmin = fb/2 . B.W = fb/2 for QPSK B.W = fb for BPSK fc fb/2 fc – fb/4 fc + fb/4 Sec3_Dig_Modu

37 Example : For a QPSK Modulator with an input data rate fb =10 Mbps , and a carrier frequency fc = 70 MHz , determine 1)the minimum double – sided Nyquist bandwidth f N and baud rate . 2)Compare the results with a BPSK (same conditions, previous example ) . Solution : The bit rate in both the I and Q channels one half of the transmission bit rate. fbQ = fbI = fb/2 = 10/2 Mbps = 5 Mbps . highest fundamental frequency presented to either balanced modulator is fa = fbQ /2 or fbI /2 = 5MBPS /2 = 2.5 Mbps . sin (2*pi*fa*t) Sin (2*pi*fc*t) Input rate fa bps Balanced modulator Sec3_Dig_Modu Sin (2*pi*fc*t)

38 Out is sin (2*pi*fa*t) sin(2*pi*fc*t)=
0.5 cos 2*pi*(70-2.5)*t – 0.5 cos 2*pi*(70+2.5)t . Minimum Nyquist bandwidth f N = 72.5 – 67.5 = 5 MHz. Or f N = fbQ =fbI = fb Symbol rate = bandwidth = 5M baud . B.W = 5MH z 67.5MHz 72.5MHz fc Sec3_Dig_Modu

39 Comparing : QPSK BPSK f N 5 MHz 10 MHz baud rate 5 M baud 10 M baud
For the same input bit rate f N (QPSK) =0.5 f N (BPSK) f N = fb for BPSK f N =0.5 fb for QPSK baud rate (QPSK) = 0.5 baud rate (BPSK) Sec3_Dig_Modu

40 sin(wc t)(-sin wc t +cos wc t) Cos(wc t)(-sin wc t +cos wc t)
QPSK receiver sin(wc t)(-sin wc t +cos wc t) I – CH - Product detector + 0.5 V (logic 0) LPF -Sin wc t + cos wc t Recived binary data Input QPSK signal Sin wc t Carrier recovery sin wc t Power splitter Q I LPF +90 -Sin wc t + cos wc t cos wc t LPF -Sin wc t + cos wc t Product detector + 0.5 V (logic 1) - Q – CH Cos(wc t)(-sin wc t +cos wc t) Sec3_Dig_Modu

41 I =(-sin wc t +cos wc t )(sin wc t) (QPSK input signal) (carrier)
I –CH I =(-sin wc t +cos wc t )(sin wc t) (QPSK input signal) (carrier) = -sin wc t sin wc t + cos wc t sin wc t . =- sin wc t + cos wc t sin wc t. = -0.5(1-cos2wc t)+0.5 sin(wc+wc)t +0.5 sin(wc-wc)t. filtered filtered I = cos 2wct sin 2wct +0.5 sin 0 I =- 0.5 V  I = 0 (logic). Q = 0.5 V  Q=1 (logic). Sec3_Dig_Modu

42 Offset QPSK (OQPSK) OR (OKQPSK)
Offset QPSK (OQPSK) OR (OKQPSK) : OQPSK is a modified form of QPSK where the bit waveforms on the I & Q channels are offset or shifted in phase from each other by one-half of bit time . I –ch input data One half bit relay Balance modulator OQPSK OUT Reference carrier oscillator Linear summer +90 Q –ch input data Balance modulator Fig. OQPSK block diagram Sec3_Dig_Modu

43 Cos wc t -sin wc t sin wc t -Cos wc t Fig. bit alignment. tb b1 b2 b3
I-ch tb/2 b0 b1 b2 b3 Q-ch tb Q I 1 1 Q I 0 1 Cos wc t +135 +45 -sin wc t sin wc t Q I 0 1 Q I 0 0 -135 -45 FIG. Constellation Sec3_Dig_Modu -Cos wc t

44 In OQPSK : There is never more than a single bit change in the dibit code , So; There is never more than a 90 shift in the output phase. In conventional QPSK 00 to shift in the output phase . 01 to 10 An advantage of OQPSK is the limited phase shift . A disadvantage of OQPSK is that baud rate (OQPSK) = 2fbI = 2fbQ baud (OQPSK) =2 baud (QPSK) fN (OQPSK) =2 fN (QPSK) Sec3_Dig_Modu

45 Eight – Phase PSK 8 PSK = MPSK M=8, N-3 Binary M =2 N = 1
Dibit M = N =2 Tribit M= N=3 Sec3_Dig_Modu

46 M-ary pulse amplitued modulation
PAM levels +1.307 +0.541 -1.307 Rb/3 2to4 level converter PAM Product modulator I-channel Input Rb sin wc t C Rb/3 8-PSK Reference oscillator Linear summer Q I C Inverter +90 C cos wc t Rb/3 2to4 level converter PAM product modulator Q-channel M-ary pulse amplitued modulation M=4 Fig. 8-PSK modulator Sec3_Dig_Modu

47 Truth table for I-ch truth table for Q-ch
I C output Q Cpar output 2 – to – 4 level converter inputs (I , C or Q , Cpar ) AND 4 – outputs parallel input digital – to-analog converter DACs with 2-input bits ,4-output level voltage . I or Q determines the polarity of the output analog signal (1 +ve & 0 -ve ). C or Cpar determines the magnitude (1  & 0  v ) ) 2 magnitude & 2polarities  4 different output conditions are possible . Sec3_Dig_Modu

48 PAM sin wc t cos wc t PAM Example 12-5
For a tribit of Q=0 & I=0 And C=0 (0 0 0 ),determine the output phase for the 8-PSK Modulator ? 2to4 level converter PAM Product modulator I-ch sin wc t Reference oscillator Linear summer Q I C +90 1 cos wc t 2to4 level converter PAM product modulator Q-ch Sec3_Dig_Modu

49 I-ch Inputs to 2-to-4 converter are (0 0)  from truth table PAM = V . Q-ch Inputs to 2-to-4 converter are ( 0 1 )  from truth table PAM = V . I C Q C ` Product Mod. I V sinwc t I-ch . Product modulator sinwc t V Product mod .Q coswc t V Coswc t Linear summer output = sin wc t cos wc t . = 1.41 sin(wc t – ). For the remaining tribit codes (001, 010 , 011 , 100 ,101 , 110 , 111) the procedure is the same . Sec3_Dig_Modu

50 Coswc t sinwc t+1.307coswc t 0.541 sinwc t+1.307coswc t 0.541 coswc t-1.307sinwct 0.541 coswc t+1.307sinwc t Fig. Phaser diagram. ASLO constellation can be found) sinwc t coswc t-1.307sinwc t coswc t sinwc t 0.541 sinwc t coswc t sinwc t coswc t The tribit code between any two adjacent phases changes by only one bit .(called Gray Code )OR (Maximum distance code) . Used to reduce the number of transmission errors . Sec3_Dig_Modu

51 Serial to parallel converter
8- PSK (M- ary M = 8 ) 8 = 2 ^ 3 the incoming bits are grouped into 3 bits (tribit) . I =In-phase channel . Q =in- quadrature channel . C = control channel . I-channel Rb/3 Input data Rb Q I C Rb/3 Serial to parallel converter Rb/3 Q-channel Sec3_Dig_Modu

52 Truth table for 8-PSK modulator
Cos wc t QI C Truth table for 8-PSK modulator Binary input 8-psk output phase 110 100 101 111 sin wc t 001 011 010 000 Angular seperation between any two adjacent phasors in 45 .So; *(half of that with QPSK). So, an 8-PSK signal can undergoes almost a phase shift during transmission &still retain its integrity. - Sec3_Dig_Modu

53 Bandwidth Consideration of 8 PSK
Power splitter splits the I,C,Q to three times the input Note Baud rate for 8-PSKis (1/3)Rb =minimum band width 2-to-4 level converter PAM Rb/3 Data Rb Rb/3 Q I C Rb/2 C I Q C I Q C I Q C I Q Input data Rb I-CH Rb/3 C-ch Q-ch Sec3_Dig_Modu FIG. B.W consideration of a 8-psk modulator

54 As for the previous figure (BW), The highest fundamental frequency in the I, Q, C is equal to one sixth of the bit rate of the binary input. i.e., one cycle in the I,Q,C takes the same amount of time as six input bits. Sec3_Dig_Modu

55 34-note Sec3_Dig_Modu

56 Referring to the block diagram. RbQ = RbI =Rbc =Rb/3 = 10/3 Mbps.
Example 12 – 8 For an 8 – PSK modulator with an input data rate Rb = 10 Mbps and a carrier frequency of 70 MHz , determine the minimum double-sided Nyquist bandwidth (f N ) & The baud . Solution : Referring to the block diagram. RbQ = RbI =Rbc =Rb/3 = 10/3 Mbps. The highest fundamental frequency OR fastest rate of change presented to either balanced modulator is fa = fbQ/2 =fbI/2 =fbc/2 =3.33/2 =1.667 Mbps . The output wave form the balanced modulator is sinwc t sinwa t Or sin(2*pi*fa*t) sin(2*pi*fc*t) 2 –to -4 Converter Balanced mod 2parallel input PAM Sec3_Dig_Modu

57 =0.5 cos(2*pi*(fc-fa)t) – 0.5 cos(2*pi*(fc+fa)t)
= 0.5 cos (2*pi [( )MHz] t ) – 0.5 cos (2*pi*[( )MHz] t =0.5 cos (2*pi*(68.333MHz)t ) – 0.5 cos (2*pi*(71.667MHz)t). The minimum Nyquist B.W is f N = =3.333MHz . Baud =B.W =3.333 megabaud . f N = MHz. B=3.333MHz 71.667 68.333 fc =70 Sec3_Dig_Modu

58 Parallel to serial converter
8 – PSK Receiver Analog to Digital I 4-level PAM Product detector C output sinwc t 8-PSK in Carrier recovery Power splitter Q I C Parallel to serial converter 90 Coswc t C Analog to Digital Product detector 4-level PAM Q Sec3_Dig_Modu

59 What is the truth table and constellation
16- PSK … … quadbit Baud rate = (output rate of change) and the minimum bandwidth (fb/4) ??? What is the truth table and constellation Find a block diagram for 16 PSK Sec3_Dig_Modu

60 Quadratur Amplitude Modulation (QAM)
Information is contained to both the amplitude & phase of the transmitted carrier . Output of 8-QAM (Not a constant –amplitude signal ) 8 –QAM Tx is so similar to the 8-PSK Tx except the inverter is removed . 101 coswc t 111 Constellation diagram 100 110 sinwc t Phasor diagram 010 000 011 001 Sec3_Dig_Modu

61 Adding an inverter to 8-QAM transmitter makes it an 8-PSK
QAM modulator I & Q bits determine the polarity of the QAM signal & the C channel determines the magnitude . Rb/3 2to4 level converter PAM Product modulator I-channel Input Rb sin wc t C Rb/3 8-QAM output Reference oscillator Linear summer Q I C +90 cos wc t Rb/3 2to4 level converter PAM product modulator Q-channel Adding an inverter to 8-QAM transmitter makes it an 8-PSK Sec3_Dig_Modu

62 B.W for 8-QAM = B.W for 8-PSK =Rb/3 .
Also QAM … 16-PSK … I & Q bits determine the polarity of the PAM signal at the out put of the 2-to- 4level converter , C channel determines the magnitude . The minimum B.W required for 8-QAM is Rb/3 (same as 8-PSK ). 101 coswc t 111 0.766v 100 Fig. Constellation diagram for QAM 110 sinwc t 010 000 Sec3_Dig_Modu 011 001

63 Truth table for the I&Q channel 2-to-4 level converter
Question : Sketch the output phase &amplitude .vs. time relationship for 8-QAM ? I/Q C OUTPUT Truth table for 8-QAM modulator Binary input 8-QAM output phase QIC amp Phase Truth table for the I&Q channel 2-to-4 level converter 2 Amplitudes & 4 phases Sec3_Dig_Modu

64 Example 12-7 For a tribit of (000) , determine the output amplitude & phase for the 8-QAM Transmitter . Solution : The input to the I-ch 2-to-4 level converter are (I=0 , C=0), from I truth table , the output is Similarly for Q-ch  to-4 output is I-ch product modulator  and sinwc t The output is I = sinwc t Q = coswc t Output = sum ( I + Q )  sinwct – coswct = sin(wc t -135 ) Similar procedure for 001,010,011,100,101,110,111 Sec3_Dig_Modu

65 BANDWIDTH CONSIDERATINOF 8-QAM
8-QAM Rx 16-QAM Sec3_Dig_Modu

66 Band Width Effecting (called information density ) (CHECK)
Compares the performance of one digital technique to another. B.W efficiency = [transmission rate(bps) / minimum bandwidth(Hz)] unit [(bits/sec)/Hz] = bits/cycle Example 2-10 : Determine the bandwidth efficiencies for the following modulation schemes , BPSK,QPSK ,8-PSK & 16-PSK .for a transmission rate of 10 Mbps . Solution : The minimum bandwidths required were . Modulation scheme minimum B.W (MHz) B.W efficiency BPSK Rb (FULL) =10MHz Mbps/10MHz =1bit/cycle QPSK Rb/2 = 5MHz /5 =2 bit/cycle . 8-PSK Rb/3 =3.33 MHz /3.33= 3 bit/cycle . 16-PSK Rb/4 = 2.5 MHz /2.5 =4 bit/cycle . Sec3_Dig_Modu

67 BPSK B.W efficiency =10(Mbps)/10(MHz) = 1 bit/cycle .
QPSK B.W efficiency = 10 /5 = 2 bits / cycle . 8-PSK B.W efficiency =10/3.33 = 3 bits/cycle . 16 – PSK B.W efficiency =10/2.5 = 4 bits/cycle . BPSK is the least efficient. 16 PSK is the most efficient ………………………………………………. 16-PSK requires (1/4) BW as BPSK for the same input bit rate . Sec3_Dig_Modu

68 Probability of Error & Bit Error Rate (Pe & BER)
Pe : theoretical (mathematical) expectation . BER : empirical (historical) record . Pe is a function of : 1) Carrier to noise power (C/N) or (Eb /No) . Eb : average energy per bit. No : noise power density . N: thermal noise power . C: carrier power . 2) M: the number is possible encoding conditions . C(dBm) =10 log C(watts) /0.001. Sec3_Dig_Modu

69 C(dBm) =10 log C(watts) /0.001. Thermal Noise Power N=kTB K=boltzmann’s constant ( 1.38 *10^ -23)J/k. T: temprature kelvin (0 k=-273 C) , To = 290 k room . B: bandwidth (Hz). N (dBm) = 10 log (kTB)/0.001. C/N = C/KTB (unit less) C: carrier power .(W). N: Noise power .(W) . C/N (dB) = 10 log (C/N) = 10 logC – 10 log N = C(dBm) – N (dBm) . dBm :…… milliwatt. Sec3_Dig_Modu

70 Energy per bit Eb = cTb ( J/bit)
Eb : average energy per bit. C: carrier power . Tb: time of a bit Eb (dBJ) = 10 log Eb . Tb = 1/Rb Rb :bit rate . Eb = cTb = C/Rb (J/bit ) . Eb (dBJ) = 10log (C/Rb) =10 logC – 10 log Rb Also , No =N/B (W/Hz) No: Noise power density (W/Hz) , N: thermal noise power (W), B: Bandwidth (Hz) . Sec3_Dig_Modu

71 No(dBm) = 10 log (N/0.001) – 10 log B
No(dBm) = N(dBm) – 10log (B) . But , No = kTB/B = KT (W/Hz) . No(dBm) = 10 log (k/0.001) + 10 log (T) . No : noise power present in 1Hz of Bandwidth . Eb/No = (C/Rb)/(N/B) = CB/N Rb = (C/N) *(B/Rb) carrier to noise power ratio noise bandwidth to bit rate ratio Eb/No(dB) = 10 log (C/N) + 10 log (B/Rb) Eb/No(dB) = 10 log Eb log No . Eb/No is used to compare 2 or more digital modulation systems that use different transmission rates (bit rate ) , modulation schemes (FSK,PSK,QAM), OR encoding techniques ( M- ary ) . Sec3_Dig_Modu

72 Example : (CHECK) For a QPSK system , C= 10^-12W , Rb= 60 kbps , N = 1.2 * 10^-14 W , B= 120 kHz . Determine a) carrier power in dBm . b) noise power in dBm . c) noise power density in dBm . d) energy per bit in dBJ . e) carrier to noise power ratio in dB. f) Eo/No ratio . Solution : a) C(dBm) = 10 log C/0.001 = 10 log (1*10^-12)/ = -90 dBm . b) N(dBm) = 10 log (N)/0.001 = 10 log (1.2*10^-14) / 0.001= dBm . c) No(dBm) = N (dBm) log B = – = -160 dBm . Or , No =N/B = 1*10^ No(dBm) = 10log (No/0.001) = -160 dBm. Sec3_Dig_Modu

73 d) Eb(dBJ)= 10 log C/Rb = 10 log (10^-12)/60kbps =-167.8 dBJ.
e) C/N = 10 log C/N = C(dBm) – N(dBm) = -90 – (-109.2) = 19.2 dBm . f) Eb / No (dB) = 10 log (C/N) + 10 log (B/Rb) = log (120 kHz/60kbps) = 22.2 dB. Sec3_Dig_Modu

74 (CHECK) PSK error performance
Bit error probability of an M-PSK Pe = 1/log M , erf (z) z = sin (pi/M)( log M ) ( Eb /No ) for M-PSK . erf : error function M: # of phases . 2 Pe 10^-1 10^-2 10^-3 10^7 10^-8 32 level 16 level 8 level Fig. error raty of PSK Eb/No 2-4 level Same Pe Sec3_Dig_Modu

75 (CHECK) Example : Determine the minimum bandwidth required to achieve a Pe of (10^-7) for an 8-PSK system operating of 10 Mbps with a carrier-to-noise power ratio of 11.7 dB. Solution : From fig. 8-PSK 10^-7  Eb/No = 14.7dB . Eb/No = (C/Rb)/(N/B) = (C/N)* (B/Rb)  minimum B.W (B) B/Rb =( Eb/No) / (C/N) . B/Rb(dB) = ( Eb / No) (dB) – (C/N) (dB)) B/Rb = 14.7 – 11.7 = 3 dB B/Rb = antilog 3= 2. B = 2Rb B(min) = 2(10 Mbps) . B(min) = 20 MHz . Sec3_Dig_Modu

76 (CHECK) QAM error performance .
IS QAM better than MPSK for M> 4 Pe = (1/log L) (L -1 /L) erf C(z) . L : # of levels on each axis L=2. erfc : Complementary error function . z = ( log L / L-1 ) ( Eb/No) 2 2 10^-1 10^-2 10^-3 10^-8 64 level 16 level 32 level 4 level Eb/No Sec3_Dig_Modu FIG. QAM Error rate

77 Table 12-2 for Pe = 10^-6 = BER . C/N(dB) Eb/No(dB) BPSK 10.6 10.6
QPSK 4QAM 8QAM 8PSK 16PSK 16QAM 32QAM 64QAM Sec3_Dig_Modu

78 For the same Pe Eb/No (4-QAM) < Eb/No (8-PSK) 4-QAM is better .
(CHECK) Example 12 – 13 Which system requires the highest Eb/No ratio for a probability of error of 10^-6 , a four – level QAM system or an 8-PSK system . Solution : 4-QAM at 10^ dB 4-QAM Pe = 10^ Eb/No =10.6 dB. (fig.QAM Pe ) . 8-PSK Pe = 10^ Eb/No =14dB (fig. 8-PSK Pe) For the same Pe Eb/No (4-QAM) < Eb/No (8-PSK) 4-QAM is better . 64 level 32 level Pe 16 level 10^-6 4 level Eb/No vs. Pe for QAM . FIG. Sec3_Dig_Modu

79 FSK Error Performance (CHECK)
(different than PSK ,QAM treatment ). noncoherent (asynchronous ). FSK has two types coherent (synchronous ) . 1) Noncoherent FSK : Trans & Rec are not freq or phase synchronized. P(e )= 0.5 exp ( -Eb /No) . (for non-coherent FSK) 2) Coherent FSK : Trans & Rx are in freq & phase synchronization P(e) = erfc ( Eb /No) . (for coherent FSK) . Noncoherent Pe Coherent better Eb/No Sec3_Dig_Modu

80 Differential Phase Shift Keying (DPSK) check Rx . (CHECK)
PSK requires a complicated synchronizing circuit at the Rx (disadvantage ) (requires recovering the phase-coherent circuit ) . DPSK avoids this complexity . * Let b’(t) : the binary message to be transmitted . b b(t): auxiliary message stream generated from b(t) , using a logic circuit . * the first bit in b(t) is arbitrary . * subsequent bits in b(t) determine as when b’(t) = b(t) does not change its value . b(t) = b(t) changes its value . Sec3_Dig_Modu

81 Fig.block of DPSK Transmitter
Example : b(t) b(t) phase pi pi pi pi Or b(t) phase pi pi pi pi pi arbitrary b(t) b(t) Logic circuit (XNDR) Balance modulator (multiplier) V(t) = + Acos wo t - V(t) 1 bit delay Acos wo t Sec3_Dig_Modu Fig.block of DPSK Transmitter

82 Synchronous detector multiplier
2 2 V(t) V(t-T)(A/2V)[ coswoT+cos2wo (t-T/2) ] V(t) V(t-T) b(t) (V(t)/V) *Acos wo (t) Synchronous detector multiplier Low pass filter (V(t-T)/V) *Acos wo (t-T) 1 bit delay Fig.A DPSK Receiver Sec3_Dig_Modu

83 Receiving b(t) V(t) One- bit shift (delay ) V(t-T) b(t) V(t) V(t-T) Sec3_Dig_Modu

84 For the signal output to be as large as possible cos wo t = + 1
Advantages of DPSK no synchronous carrier is necessary at the receiver ( simple to implement ) Disadvantages of DPSK An error occur in pairs in DPSK ; Pe is greater than PSK OR DPSK ( 1-3dB) more SNR to get the same bit error rate as that of PSK . - Sec3_Dig_Modu


Download ppt "An Najah National University Telecommunication Engineering Department"

Similar presentations


Ads by Google