Presentation is loading. Please wait.

Presentation is loading. Please wait.

Masses in the cosmos measurement programs comparisons mass models facing the challenge Nuclei in the Cosmos – IX 25-30 June 2006 CERN, Geneva David Lunney.

Similar presentations


Presentation on theme: "Masses in the cosmos measurement programs comparisons mass models facing the challenge Nuclei in the Cosmos – IX 25-30 June 2006 CERN, Geneva David Lunney."— Presentation transcript:

1 masses in the cosmos measurement programs comparisons mass models facing the challenge Nuclei in the Cosmos – IX 25-30 June 2006 CERN, Geneva David Lunney – CSNSM (IN2P3/CNRS) – Université de Paris Sud, Orsay

2

3 High resolution mass spectrographs Development of first mass model C. F. v. Weizsäcker, H.A. Bethe (1935/36) F.W.Aston (~1920‘s): 212 isotopes discovered Packing fraction Some introductory remarks on history How the sun shines,” J. Bahcall http://nobelprize.org/physics/ E = mc 2 A. Eddington (~1920) Stellar combustion

4

5 Motivation from “fundamental” physics metrology: the kilogram: 28 Si atomic mass standard and other fundamental constants (what if they vary with time?!)

6 nuclear structure from the mass surface

7

8 known masses r-process path   decay path  decay one / two -delayed neutron decay p-isotope s r Pb Tl Hg Hf Lu Yb Tm Er Au Pt Ir Os Re W Ta Po Bi At neutron number126 s stable isotopes -process path    Stellar Nucleosynthesis (A  200)

9 Techniques Indirect (energy) reactions: A(a,b)B Q = M A + M a - M b - M B decays: A  B +  Q  = M   M  Direct (mass spectrometry) time of flight: TOF = (m/q) (L/B  ) cyclotron frequency: f c = qB/m ISOL (keV) FIFS (MeV) PRODUCTION SCHEME better precision better sensitivity ‘the best of both worlds’ gas cell RFQ

10 ESR-FRS (GSI) SPEG CSS2 (GANIL) ISOLTRAP (CERN) MISTRAL (CERN) FSU- TRAP (MIT) UW-PTMS

11 mass measurement programs at GANIL CSS1 SPEG Resolving power: 10 4 extremely sensitive SPEG time-of-flight + magnetic rigidity m = q B  T / L H. Savajols et al., EPJ A 25 (2005) 23 and B. Jurado et al., submitted (2006) - - - - - - - - - - + + + + + X Y Z

12 mass measurement programs at GANIL CSS1 CSS2 time-of-flight: phase difference with acceleration (longer flight path) M. Chartier et al., J. Phy. G 31 (2005) S1771

13 mass measurement programs at GANIL CIME (SPIRAL) time-of-flight: variable RF acceleration (longer flight path) M.-B. Gomes Hornillos et al., J. Phy. G 31 (2005) S1869

14 mass measurement programs at GSI Isochronous Mode very fast but not as precise Schottky Mode very precise but cooling slow Experimental Storage Ring:  m/q)/(m/q)   v/v (  t 2   2 )   f/f  t 2

15 IMS 2002 M. Matos, Ph.D (2004) SMS 2002 E. Kaza, Ph.D (2004) Yu. Litvinov, Ph.D. (2003): ~ 600 species in the ring 466 masses measured (117 calibration masses) 139 masses from links 200 improved masses 75 new mass values IMS J. Stadlmann (Ph.D) and Phys. Lett. B (2004) see talk of F. Bosch Yu. Novikov et al., Nucl Phys A (2002) Yu. Litvinov et al., (2005)

16 Linac2 50 MeV Booster 1.4 GeV PS

17

18 ISOLDE CERN, Geneva proton beam 1 GeV HRS GPS REX-ISOLDE MISTRAL ISOL- TRAP 10 m

19 COLETTE Paul trap MISTRAL Detector Quadrupole Doublet ISOLDE Beam Reference Source 1 m MISTRAL 2005 * D.E. Alburger et al. Phys. Rev. C 18, 2727 (1978) Alburger 78 * Mass Excess (keV) 12 Be (T 1/2 = 21 ms)

20

21 1 m The mass spectrometer ISOLTRAP 2 cm hyperbolic Penning trap: precision mass measurement cylindrical Penning trap: isobar separa- tion & cooling 20 cm Gas-filled RF-Paul trap: universal beam collector low energy bunches continuous 60 keV ISOLDE beam see talk of A. Herlert

22 SHIPTRAP (GSI) CPT (ANL) LEBIT (NSCL) TITAN (TRIUMF) ISOLTRAP (CERN) (RIKENRING) JYFLTRAP MATS (FAIR) or “what ISOLTRAP hath wrought” SMILETRAP (MSI) MAFFTRAP

23 Canadian Penning Trap (CPT) facility at ANL 46 V  46 Ti : Savard et al., PRL (2005) (not available from ISOLDE) See poster here. beam

24 trap cooler ion guide mass separator JYFLTRAP at the Jyväskylä IGISOL ISOLDE elements See poster of A. Jokinen IGISOL elements

25 SHIPTRAP facility at GSI ISOL facility for transuranium nuclides 92 Mo ( 58 Ni,xpyn) 147 Ho  new masses for 147 Ho, 147,148 Er (  10  6 ) (M. Block et al., ENAM04) see poster here

26 Low Energy Beam & Ion Trap (LEBIT) facility at NSCL/MSU http://www.nscl.gov/lebit G. Bollen et al., PRL 96 (2006)

27 M. Matoš (CGS-12, Notre Dame) AIP Conf. Proc. 819 (2006) 164 See poster of A. Estrade 86 Kr primary beam

28 cyclotron target separator post- accelerator magnet

29

30 Reviews of Modern Physics, 75 (2003) 1021

31 ENAM04 Proc., Eur. Phys. J. A, 25 (2005) 3

32 Proc. Nuclei in the Cosmos IX, PoS (2006) ?

33  Performance of the various methods See: Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003) 1021

34

35

36 MAFF facility at FRM-II M ünich A ccelerator for F ission F ragments trap n-rich nuclides trap funnel Bavarium D. Habs et al., ENAM 2004 (MAFF workshop 04/2005)

37 ISAC beam TRIUMF Ion Trap (TITAN) facility Paul trap Cooling and Bunching (1-5ms) EBIT Rapid charge breeding (2-30 ms) Wien filter m/q selection Penning trap Precision mass measurement (~ 10-100ms) J. Dilling et al. ENAM04 Mass measurements T 1/2 ≈10 ms  m/m < 1  10 -8 Operational 2006 f c = qB/m

38 Beyond the horizon GSI ’s future Facility for Antiproton and Ion Research (FAIR) FAIRTRAP (MATS) FAIR RINGS (ILIMA)

39 stellar nucleosynthesis

40 The atomic mass evaluation* * G. Audi and A.H. Wapstra, Nuclear Physics 1988, 1993, 1995, 2003 S P Si Al 10 11 12 13 14 15 16 16 15 14 13 27 Al (p,  ) 28 Si 28 Si ( 3 He, 8 Li) 23 Al 28 Si ( 4 He, 8 He) 24 Si 28 Si (p,t) 26 Si 28 Si (p,n) 28 P 28 Si (d,p) 29 Si 28 Si (p,  ) 29 P 28 Si (  +,  - ) 28 S 31 P (p,  ) 28 Si and 28 Si / 12 C Not a compilation !

41

42 The Mass Evaluation. 28 Si. 1 =......... 28 Si... Audi-Wapstra mass table 5520 experimental data (186 rejected) plus 601 estimated data 3652 equations; 3017 parameters 1920 ground state masses plus 730 recommed values least squares mass adjustment (1993)

43 A simplified overview of mass models microscopic sculpturings of a macroscopic blob (FRDM) algebraic formulas (Garvey-Kelson; IMME) microscopic nucleon-nucleon interaction (RMF / HFB) physics input ease of use Extended Thomas-Fermi Strutinki Integral model macro: TF Skyrme approximation micro: Strutinski correction (folded Skyrme) 9 parameters good mass fit most nuclear properties now full HFB HFBCS:S. Goriely et al., At. Nuc. Data (2001) HFB 1:M. Samyn et al., Nucl. Physics (2002) HFB 2:S. Goriely et al., Phys. Rev. C (2002) HFB 3:M. Samyn et al., Nucl. Physics (2003) HFB 4-7:S. Goriely et al., Phys. Rev. C (2003) HFB 8:M. Samyn et al., Phys. Rev. C (2004) HFB...

44 Fit to 1995 AME (1768 masses) local models Only 60% masses fit 15+4 18+4 15+4 19+12 28 34+81 21+12 mass data parameters + other data parameters Chaos-limited mass prediction?

45

46 D. Lunney et al., ENAM 1995 (Arles) mass model comparisons

47 From: D. Lunney, “Nuclear masses: Experimental programs, theoretical models and astrophysical interest,” p. 296

48

49 Conclusions Mass Models microscopic era; real need for data (diagnostic tool) Kierkegaard: I must find a truth that is true for me. Mass Measurements higher performance; programs multiplying  more data, better quality Lichtenberg: To find something new, must build something new. Mass Evaluation global benchmark (last judgement) “A false balance is abomination to the Lord: but a just weight is his delight.” — Proverbs 11.1 “ The construction of the universe is certainly much easier to explain than that of a plant ”.


Download ppt "Masses in the cosmos measurement programs comparisons mass models facing the challenge Nuclei in the Cosmos – IX 25-30 June 2006 CERN, Geneva David Lunney."

Similar presentations


Ads by Google