Geometry – **Triangles** **and** Trapezoids All **Triangles** are related to rectangles or **parallelograms** : Each rectangle or **parallelogram** is made up **of** two **triangles**! You can draw a diagonal line in any rectangle or **parallelogram**. The **area** formula for a rectangle or a **parallelogram** is: A = bh Each **triangle** is ½ **of** a rectangle or a **parallelogram**. There are two **triangles** in these shapes! The **area** formula for a **triangle** is It can also be written as The height is/

cm Copyright © Ed2Net Learning, Inc. 15 Relation **of** **Area** **of** **Parallelogram** with **Area** **of** a Rectangle Step 1: Draw **and** then cut a rectangle. Step 2: Cut a **triangle** form one side **of** the rectangle **and** move it to the other side to form a **parallelogram**. The base **of** the **parallelogram** corresponds to the length **of** the rectangle The height **of** the **parallelogram** corresponds to the width **of** the rectangle **Area** = base x height Length (l) Width (w/

me how it can be changed into 2 equal **triangles**! – Figure out the **area** **of** the **triangle**. So what did you find? What do you think the **area** **of** a **triangle** is then? **Area** **of** rectangle: Base X Height OR Length X Width **Area** **of** **parallelogram**: Base X Height **Area** **of** **triangle**: (Base X Height) Base Height 2 Now that you know the **area** **of** a rectangle, a **parallelogram**, **and** a **triangle**, figure out the following: Ms. Abulnour’s living/

**Area** Chapter 10 O In your own words, write a definition for **area**. O Create a list **of** the **area** formulas that you know. O Rectangle O **Triangle** O **Parallelogram** O Justify or prove these **area** formulas in your notes. Examples The **area** **of** the **parallelogram** is 7cm². Find h, the height **of** the **parallelogram**. h O Trapezoid O Rhombus/kite O Homework: O Page 619 (1-5 all, 7, 8-16 even, 17-21 all, 31, 32,34,36, 41-43 all Justify or prove the **area** formulas for Trapezoids **and** for Rhombus’s/kite’s.)

shape? A rectangle Lesson 1 - **Area** **of** **Parallelograms** Discussion How does this compare to the base **and** height **of** the **parallelogram**? They are the same When we moved the **triangle**, did the **area** inside the shape change? The **area** did not change because it is the same size. It just looks different. Lesson 1 - **Area** **of** **Parallelograms** Discussion Find the **area** **of** the rectangle. Lesson 1 - **Area** **of** **Parallelograms** Discussion If the **area** **of** the rectangle is 21 square/

Volume **of** cuboids Sectors **of** circles Surface **area** Volume **of** prisms Volume **and** surface **area** **of** complex shapes Rectangles **and** **Triangles** **Parallelograms** **and** Trapeziums Compound Shapes Success Criteria: Where Are We Now? LevelLearning outcomes:RAG F2 I can find the perimeter **and** **area** on a shape by measuring or counting. E3 I can find the perimeter **and** **area** **of** a **triangles** **and** quadrilaterals by calculation. D1 I can find the **area** **of** a **parallelogram** **and** trapezium. C3 I can find the circumference **and** **area** **of**/

the Height & Base 77 Obtuse **Triangle** Height Extra Base **Area** **of** Obtuse **Triangle** = **Area** **of** Right **Triangle** = ½ (Base)(Height) 78 **Area** **of** a **Triangle** The **area** **of** a **triangle** is one half the base times the height. Height Height Height Base Base Base Day 14: February 16th Objective: Use rectangles **and** **triangles** to develop algorithms to find the **area** **of** new shapes, including **parallelograms** **and** trapezoids. THEN Explore how to find the height **of** a **triangle** given that one side has/

at B. Hence it is a rectangle. So **area** (ABCD) = AB. BC. But, **area** (ABCD) is the sum **of** the **areas** **of** the two **triangles**, **and**. Now, the diagonal **of** a rectangle (or any **parallelogram**) divides it into two congruent **triangles**, so. In particular, **area** ABC = **area** ADC. Combining all this information, we see: AB. BC = **area** ABCD = **area** ABC + **area** ADC = **area** ABC + **area** ABC = 2. **Area** ABC. Thus, **area** ABC =. AB. BC, as claimed for the case/

: Parallel line segments Perpendicular line segments To draw: Perpendicular bisectors Angle bisectors Generalize rules for finding the **area** **of**: **Parallelograms** **Triangles** Explain how the **area** **of** a rectangle can be used to find the **area** **of**: **Parallelograms** **Triangles** 3.1 – Parallel **and** Perpendicular Line Segments What you will learn: To identify, describe, **and** draw: Parallel line segments Perpendicular line segments Parallel Describes lines in the same plane that never cross, or intersect/

= 52 h = 4 Step 2: Use h to find the **area** **of** **parallelogram**. A = bh A = 6(4) A = 24 in2 **Area** **of** a **parallelogram**. Substitute 6 for b **and** 4 for h. Simplify. CONFIDENTIAL **Area**: **Triangles** **and** Trapezoids The **area** **of** a **Triangle** with base b **and** height h is A = 1 bh. 2 h b The **area** **of** a Trapezoid with bases b1 **and** b2 **and** height h is A = 1 (b1 + b2 )h. b2 h/

2 288 ft 2 10.2 **Area** **of** **Triangle** **and** Trapezoids I can find the **area** **of** **triangles** **and** trapezoid You can divide any **parallelogram** into two congruent **triangles**. So the **area** **of** each **triangle** is half the **area** **of** the **parallelogram**. Find the **area** **of** the **triangle**. A = 1212 bh A = 120 The **area** is 120 ft 2. Find the **area** **of** the **triangle**. A = 1212 bh A = 360 The **area** is 360 in 2. Find the **area** **of** the trapezoid. A = 1212 h(b/

a rectangle with a base **of** 4 in. **and** a height **of** 2 in. Use the grid to find the perimeter **and** **area** **of** the leftmost shaded **parallelogram**. **Area**: The base **and** height **of** the leftmost shaded **parallelogram** each measure 1 in., so the **area** is A = bh = (1)(1) = 1 in2. in. Check It Out! Example 4 In the tangram, find the perimeter **and** **area** **of** the large green **triangle**. Each grid square has a/

square meters, square centimeters, square inches, or square kilometers. **Area** **of** a **triangle** To find the **area** **of** a **triangle**, you have to multiply the base by its height **and** divide by 2. You have to divide by two because a **parallelogram** can be divided into 2 **triangles**. The **area** **of** each **triangle** (2 **of** them) **of** a **parallelogram** is equal to one-half the **area** **of** the **parallelogram**. The equation is: A = ½ (bh) The b stands for/

the perimeter **and** **area** **of** simple geometric figures? Vocabulary: Polygon: a closed plane figure bounded by three or more line segments. Quadrilateral: any four sided polygon. **Parallelogram**: a quadrilateral whose opposite sides are parallel. Square: a four sided polygon characterized by four right angles **and** four sides **of** equal length. Rectangle: a four sided polygon characterized by four right angles **and** opposite sides **of** equal measure. **Triangle**: a three/

be inside the **triangle**.) b h **Area** = Find the **areas** **of** the green **and** blue **triangles**. The **area** **of** the green **triangle** is: **Area** = ½ · (4·3) = ½ · 12 = 6 square units The **area** **of** the blue **triangle** is: **Area** = ½ · (3·3) = ½ · 9 = 4.5 square units 3 3 3 4 Trapezoids The **area** **of** a trapezoid can be thought **of** as half **of** a **parallelogram** made out **of** two congruent trapezoids. The **area** **of** a trapezoid is half the **area** **of** the two **parallelograms**. The trapezoid/

the number you use for height. The height **of** this **parallelogram** is not 8 it is 6. This is because the 8 is on a lean. 12m 7m 5m 4cm 8cm 6cm **Triangles** dont stay the same width the whole way across. Two **triangles** can make a rectangle so each **triangle** is half as much **area** as the rectangle. **AREA** =½ x WIDTH x HEIGHT 7 10A =__/

Perimeter & **Area** **of** Rectangles & **Parallelograms** 6-2 Perimeter **and** **Area** **of** **Triangles** **and** Trapezoids Course 3 Warm Up Warm Up Problem **of** the Day Problem **of** the Day Lesson Presentation Lesson Presentation Warm Up Course 3 6-2 Perimeter **and** **Area** **of** **Triangles** **and** Trapezoids 1. Find the perimeter **of** a rectangle with side lengths 12 ft **and** 20 ft. 3. Find the **area** **of** a **parallelogram** with height 9 in. **and** base length 15 in. 2. Find the **area** **of** a rectangle/

(b 1 + b 2 ) or **Triangles**, Rectangles, **Parallelograms**, Trapezoids (**Area** **and** Perimeter) Average the bases A = P = **Triangles**, Rectangles, **Parallelograms**, Trapezoids (**Area** **and** Perimeter) **Triangles**, Rectangles, **Parallelograms**, Trapezoids (**Area** **and** Perimeter) A pool is 8 ft by 12 feet. There is a 5 foot cement sidewalk around the pool. What is the **area** **of** the cement sidewalk? 8 12 **Triangles**, Rectangles, **Parallelograms**, Trapezoids (**Area** **and** Perimeter) **Area** **and** Perimeter Formulas: **Triangle**: A = ½ bhP = Rectangle:A/

the pieces is the sum **of** the **areas** **of** the pieces. 6.7 **Areas** **of** **Triangles** **and** Quadrilaterals Recall that a rectangle with base b **and** height h has an **area** **of** A = bh. You can use the **Area** Addition Postulate to see that a **parallelogram** has the same **area** as a rectangle with the same base **and** height. 6.7 **Areas** **of** **Triangles** **and** Quadrilaterals Remember that rectangles **and** squares are also **parallelograms**. The **area** **of** a square with side s/

**and** Vocabulary California Standards Key Concept: **Area** **of** a **Parallelogram** Example 1: Find the **Area** **of** a **Parallelogram** Example 2: Find the **Area** **of** a **Parallelogram** Example 3: Real-World Example Lesson 1 MI/Vocab base height Find the **areas** **of** **parallelograms**. Lesson 1 CA Standard 6AF3.1 Use variables in expressions describing geometric quantities (e.g., P = 2w + 2, C = πd—the formulas for the perimeter **of** a rectangle, the **area** **of** a **triangle**, **and** the circumference **of**/

about the **area** **of** the **parallelogram** **and** the **area** **of** one **of** the **triangles**? A.The **area** **of** the **parallelogram** is twice the **area** **of** one **of** the **triangles**. B.The **area** **of** the **parallelogram** is four times the **area** **of** one **of** the **triangles**. C.The **area** **of** the **parallelogram** is half the **area** **of** one **of** the **triangles**. D.The **area** **of** the **parallelogram** is one-fourth the **area** **of** one **of** the **triangles**. DistrictState 55% 9% 29% 7% M.PS.05.05 Represent relationships between **areas** **of** rectangles, **triangles**, **and** **parallelograms** using/

the new team logo. All submitted entries had to use two **parallelograms** **and** one **triangle** with the dimensions given below. What would the total **area** be for the winning logo? **Area** **of** **triangle**= b x h ÷ 2 A = 6 x 6 ÷ 2 A = 18 **Area** **of** **parallelogram** = b x h A = 8 x 8 A = 64 Total **area** **of** new logo = 1 **triangle** + 2 **parallelograms** A = 18 + (2 x 64) A = 146 The total/

**AREA** **OF** SHAPES MEMORY GAME Have a look at these Formulas below **and** try **and** memorise them SHAPEPICTUREFORMULA Square Rectangle **Triangle** **Parallelogram** Trapezium Kite a a a ab ba h MEMORY GAME Have a look at these Formulas below **and** try **and** memorise them SHAPEPICTUREFORMULA Squarea x a = a 2 Rectanglea x b = ab **Triangle**/2 ab a a a ab ba h Which Formula’s is missing? SHAPEPICTUREFORMULA Square Rectanglea x b = ab **Triangle** 1 / 2 x a x b = 1 / 2 ab **Parallelogram** Trapezium 1 / 2 x (a + b) x h Kite 1 / 2 x a x b = 1/

**Areas** **of** **Triangles**, **Parallelograms**, & Trapezoids Rectangle **Area** = number **of** square units contained in the figure. Calculated A = lw l w Rectangle Sometimes referred to as base **and** height A = bh b h **Parallelogram** Especially, when we are looking at a **parallelogram** A = bh b h **Parallelogram** Height is always PERPENDICULAR to the base A = bh b h **Triangles** Now let’s consider **triangles** b h How would we calculate the **Area** **of** the **triangle**? **Triangles** A = ½ bh/

#8 POLYGONS **and** **AREA** **Area** **of** **Triangles** POLYGONS **and** **AREA** **Area** **of** **Triangles** MENU STUDENT PROBLEMS Find the **AREA** **of** this regular octogon: 10m 12m 5 **Area** **of** 1 **triangle**: # **of** **triangles**: 30 16 **Area**: 30x16 =480m 2 POLYGONS **and** **AREA** **Area** **of** **Parallelograms** MENU POLYGONS **and** **AREA** **Area** **of** **Parallelograms** MENU To calculate the **area** **of** a **parallelogram**… Just Multiply base **and** height B H **Area** **of** a **Parallelogram** h b *Base **and** height make a right angle. POLYGONS **and** **AREA** **Area** **of** **Parallelograms** MENU POLYGONS **and** **AREA** **Area** **of**/

to you that this **triangle** is half **of** some **parallelogram**? If we flip this **triangle** **and** join the two **triangles**, we get a **parallelogram** whose **area** is defined by A = bh. b hThe **area** **of** the **triangle** then will be A = ½ bh. Do you think you can envision every **triangle** as half **of** a **parallelogram** with the same height **and** base as the **triangle**? Before you click, imagine each **triangle** as half **of** a **parallelogram** with the same height/

related to **parallelograms**? Every **triangle** is half **of** a **parallelogram** This means that two **of** the same **triangle** combine to form a **parallelogram** How are the **area** formulas for **triangles** **and** **parallelograms** related? Since a **triangle** is half **of** a **parallelogram**, the **area** **of** a **triangle** is half **of** the **area** **of** the **parallelogram** with the same base **and** height **Area** **of** a **triangle** = ½×base×height A = ½×b×h or A = Review: What is the **area** **of** this **parallelogram**? What is the **area** **of** this **triangle**? **Area** **of** **parallelogram** = base/

= 4 4 A = bh **Area** **of** a **parallelogram**. Substitute 4 for b **and** 4 for h. A composite figure is made up **of** basic geometric shapes such as rectangles, **triangles**, trapezoids, **and** circles. To find the **area** **of** a composite figure, find the **areas** **of** the geometric shapes **and** then add the **areas**. Additional Example 3: Finding **Area** **and** Perimeter **of** a Composite Figure Find the perimeter **and** **area** **of** the figure. The length **of** the side that is not/

rectangle on the left is 24 sq mm Rectangles **and** **Parallelograms** A **parallelogram** can be cut **and** reconstructed to form a rectangle. This is why rectangles **and** **parallelograms** have the same formula! Study the diagram below to see the relationship! Formula for **Area** **of** a **Parallelogram**: **Area** = base x height or A = b x h **Triangles** A **triangle** is related to **parallelograms**, just like **parallelograms** are related to rectangles. Study the diagram below to/

three sides. Examples **of** **triangles**: Confidential6 **Area** **of** a **Triangle** The **area** **of** a **triangle** is given by "half **of** base times height“. **Area** = where b is the length **of** the base h is the height **of** the **triangle**. Note: The height is the length **of** a line segment perpendicular to the base **of** the **triangle**. 1212 x b x h Confidential7 Finding **Area** **of** **Triangle** Example1: Find the **area** **of** the **triangle** whose base is 10 cm **and** height is 4 cm/

**Areas** **of** **Parallelograms** **and** **Triangles** Lesson 7-1 Thm 7-1 **Area** **of** a Rectangle For a rectangle, A=bh. (**Area** = base · height) h b **AREA** **OF** A **PARALLELOGRAM** To do this let’s cut the left **triangle** **and**… h b slide it… h h b h h b h h b h h b …thus, changing it to a rectangle. What is the **area** **of** the rectangle? h b Thm 7-2 **Area** **of** a **Parallelogram** For a/

happens when instead we use 2 isosceles **triangles**. Given an isosceles **triangle** Make a similar **triangle**, Given an isosceles **triangle** Make a similar **triangle**, flip it **and** put both **triangles** next to each other What polygon is this? A **Parallelogram** copyright©amberpasillas2010 base height h How do you find the **area** **of** the **parallelogram**? copyright©amberpasillas2010 9 cm 5 cm6 cm 3 cm # 4 **Area** **of** a **Triangle** 8 m 6 m A = 8/

can be proved by using the properties **of** **parallelograms**. The straight line joining the mid-points **of** 2 sides **of** a **triangle** has some properties as described below. These properties are called the mid-point theorem. Mid-point Theorem The line segment joining the mid-points **of** 2 sides **of** a **triangle** is parallel to the third side **and** is half the length **of** the third side. In the figure/

= 8 in., h = 15 in. Example 4 A.base = 56 in. **and** height = 10 in. B.base = 28 in. **and** height = 40 in. C.base = 20 in. **and** height = 56 in. D.base = 26 in. **and** height = 38 in. ALGEBRA The height **of** a **triangle** is 12 inches more than its base. The **area** **of** the **triangle** is 560 square inches. Find the base **and** the height. **Areas** **of** **Parallelograms** **and** **Triangles** LESSON 11–1

diagonal line dividing the rectangle in half. What two shapes make up the rectangle?? Decomposing shapes 1. Draw a **parallelogram** on your paper 2. Draw a diagonal line dividing up your **parallelogram** What shapes make up a **parallelogram**?? **Area** **of** **Triangles** Since **Triangles** are half **of** **parallelograms**, squares, **and** rectangles use that knowledge **and** see if you can find the **area** **of** the **triangle** below: Try this one….. **Area** **of** a **Triangle** Click here for practice with **area** **of** **triangle**

1–6) Find perimeters **and** **areas** **of** **parallelograms**. Find perimeters **and** **areas** **of** **triangles**. Vocabulary base **of** a **parallelogram** height **of** a **parallelogram** base **of** a **triangle** height **of** a **triangle** Concept 1 Concept 2 Example 1 Perimeter **and** **Area** **of** a **Parallelogram** Find the perimeter **and** **area** **of** PerimeterSince opposite sides **of** a **parallelogram** are congruent, RS UT **and** RU ST. So UT = 32 in. **and** ST = 20 in. Example 1 Perimeter **and** **Area** **of** a **Parallelogram** **Area** Find the height **of** the **parallelogram**. The height forms a/

reason why understanding perimeter is important. You will share this with a partner. PART 2 Lesson 3 **Area** **of** Rectangles Lesson 4 **Area** **of** **Parallelograms** Lesson 5 **Area** **of** **Triangles** Lesson 6 **Area** **of** Irregular Shapes SPI Lesson 3 **Area** **of** Rectangles SPI 0506.4.2 Decompose irregular shapes to find perimeter **and** **area**. Essential Questions How is finding **area** different from finding perimeter? Assessment After Lesson 3 you will complete Quick Check 12-4/

**area** **of** **parallelograms** 7 We already know how to calculate the **area** **of** a rectangle. Well, a **parallelogram** is simply a sheared rectangle. **Area** **of** the rectangle= base × height **parallelogram** **Area** **of** the rectangle base height perpendicular height 8 **Area** **of** any **parallelogram** = base height Perpendicular height Does this works for any **parallelogram**? base height YES 9 The **area** **of** trapeziums 10 cm 3 cm 4 cm 6 cm **Area** **of** trapezium = **area** **of** **parallelogram** + **area** **of** **triangle**/the middle. 12 3 14 **And** all the way round the /

shape. Add at least one **triangle** **and** combine it with a **parallelogram** **and**/or rectangle. Name: Real World Design a 2,000 square foot house. The customer hates rectangular houses **and** wants a more unique shape. Add at least one **triangle** **and** combine it with a **parallelogram** **and**/or rectangle. Name: How do you find the **area** **of** a figure made up **of** **parallelograms** **and** **triangles**? OLS Lesson Fundamentals **of** Geometry **and** Algebra – Unit 2 Lesson 1/

the same way for other **parallelograms**? **Parallelogram** **Area** Theorem: The **area** **of** a **parallelogram** is given by the formula A=bh, where A is the **Area**, b is the length **of** the base, **and** h is the height **of** the **parallelogram**. What formula does this give us for the **area** **of** a **triangle**? **Triangles** What formula does this give us for the **area** **of** a **triangle**? **Area** **of** a **triangle**? A **triangle** is half **of** a **parallelogram**, therefore its **area** is given by the formula/

Slide 9 for an example.) Setting the PowerPoint View Table **of** Contents Click on a topic to go to that section **Area** **of** Rectangles **Area** **of** Irregular Figures **Area** **of** Shaded Regions Common Core: 6.G.1-4 **Area** **of** **Parallelograms** **Area** **of** **Triangles** **Area** **of** Trapezoids Mixed Review: **Area** 3-Dimensional Solids Surface **Area** Volume Polygons in the Coordinate Plane **Area** **of** Rectangles Return to Table **of** Contents **Area** - The number **of** square units (units 2 ) it takes to cover the/

in • 4 in A = 24 in2 5 in 4 in **Triangles** We can use the formula for a **parallelogram** to help us find the **area** **of** any **triangle**. Let’s use our GeoBoards to help us determine this formula. How do you find the **area** **of** a **triangle**? To find the **area** **of** a **triangle** use the formula **Area** = ½ base ● height **and** solve using the dimensions given. REMEMBER F.S.S.L!!! A/

the height. **Area** **of** a **Parallelogram** Theorem The **area** **of** a **parallelogram** is the product **of** a base **and** its corresponding height. A = bh **Area** **of** a **Parallelogram** Theorem The **area** **of** a **parallelogram** is the product **of** a base **and** its corresponding height. A = bh Example Find the **area** **of** **parallelogram** PQRS. Example What is the height **of** a **parallelogram** that has an **area** **of** 7.13 m 2 **and** a base 2.3 m long? Example Find the **area** **of** each **triangle** or **parallelogram**. 1.2/

a. A right **triangle** was cut from one end **of** the rectangle **and** slid to the other side to create a non-rectangular **parallelogram**. c. Based on your observation, write a sentence describing the **area** **of** a **parallelogram**. d. Write a formula for the **area** **of** a **parallelogram**. The **area** **of** the rectangle is equal to the **area** **of** the **parallelogram**. The width **of** the rectangle is equal to the height **of** the **parallelogram** **and** the length is equal/

) shade the **triangle** d) estimate the **area** **of** the **triangle** 3) Cut out the rectangle then cut out the **triangle**. 4) Arrange the unshaded pieces to cover the **triangle**. 5) What is the **area** **of** the **triangle** **and** how do you know? What is the formula for the **area** **of** a **parallelogram**? = A = bh What is the connection between a **parallelogram** **and** a **triangle**? = a **triangle** is ½ a **parallelogram** What would be the formula for the **area** **of** a **triangle**? A/

+c where a, b **and** c are the lengths **of** the sides. The **area** **of** a **triangle** is A= ½ bh where b is the base **and** h is the height perpendicular to the base. To illustrate why the **area** formula works, make a **parallelogram** out **of** two identical **triangles**. The height **and** base **of** the **parallelogram** is the same as that **of** the **triangle**. The **area** **of** the **parallelogram** is base times height **and** is twice the desired **area** **of** the **triangle**.

the opposite corner. This forms two congruent **triangles**. Finding the **area** **of** a **triangle** from here is fairly simple, just take ½ **of** the **area** **of** the square, rectangle, or **parallelogram**, So, the **area** A **of** a **triangle** is half the product **of** its base b **and** its height h A = ½ bh Find the **area** **of** the **triangle**: It may be necessary, when working with an obtuse **triangle**, to look outside the **triangle** to find the height. Notice how/

7 or 28 cm. 2. **Area** **of** **Parallelograms** For a **parallelogram**, we use the terms base **and** height. Remember, the height is measured straight up **and** down (like the doctor measures your height!). Therefore, the height **of** this **parallelogram** is 4 cm., not 5 cm. 7 cm 5 cm 4 cm The **area** **of** a **parallelogram** can be found by multiplying the base times the height. **Area** **of** **Triangles** 7 cm 4 cm Starting/

**Area** **of** **Parallelograms** & **Triangles** Jacob Shaffer March 31, 2014 Find the Perimeter **of** Disneyland P = 2L + 2W Perimeter Formula **of** a **Parallelogram** P = 2 (3,500 ft) + 2 (2,500 ft) Substitute 3,500 ft for Length **and** 2,500 ft for width P = 7,000 + 5,000 Multiply P = 12,000 ft Add to find total perimeter **Area** **of** a **Parallelogram** **Area** Example Find the **area** **of** this **parallelogram**: **Area** Problem 1 Find the **area** **of** the **parallelogram**: A/

A right trapezoid has a side that is perpendicular to its parallel bases. **Area** **of** Quadrilaterals The **area** **of** quadrilaterals can be found by decomposing the shape into rectangles **and** **triangles**. Recall the formulas for calculating the **area** for both shapes. **Area** **of** **Parallelogram** How can we decompose this **parallelogram** into **triangles** **and** rectangles? **Area** **of** **Parallelogram** A **parallelogram** can be decomposed into two right **triangles** with a rectangle in between them. Drawing vertical lines from the corners/

Ads by Google