Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Evolution of locomotor performance in lacertid lizards Herpetologie – 22/05/2007.

Similar presentations


Presentation on theme: "1 Evolution of locomotor performance in lacertid lizards Herpetologie – 22/05/2007."— Presentation transcript:

1 1 Evolution of locomotor performance in lacertid lizards Herpetologie – 22/05/2007

2 2 In the past… inferring adaptation if morphology ~ ecology

3 3

4 4 genera families classes spp. morphology ~ ecology

5 5 ? genera families classes spp.

6 6 Lacertid lizards

7 7 radiation into different (micro)habitats

8 8

9 9

10 10

11 11

12 12

13 13 Lacertid lizards diurnal heliothermic insectivorous oviparous  escaping from predators  foraging  social behaviour radiation into different (micro)habitats locomotion important

14 14 Outline of talk 1. correlative analysis 2. in-depth analysis existence of trade-offs mechanistic basis of performance variation ecological relevance of performance variation traditional analysis phylogenetic analysis

15 15 1. Correlative analysis  ecology (microhabitat use)  ‘design’ (external morphology) 35 lacertid species

16 16 Biomechanical predictions ground-dwelling open ground-dwelling vegetation climbing

17 17 body dimensions head dimensions limb dimensions museum collections (London, Brussels)

18 18 1. Correlative analysis body dimensions head dimensions limb dimensions museum collections (London, Brussels) ground-dwelling, open ground-dwelling, vegetation saxicolous arboreal shrub-climbing literature 35 lacertid species  ecology (microhabitat use)  ‘design’ (external morphology)

19 19 Conclusions traditional analysis body shape  biomechanical predictions  adapted to microhabitat use !! traditional analyses invalid in interspecific comparisons (Felsenstein 1985, 1988, Harvey & Pagel 1991) BUT : correlating morphology & ecology directly is dangerous (Gould & Lewontin 1979, Arnold 1983)

20 20 Comparative method : an example Does home range size differ between carnivorous mammals & herbivorous mammals ?

21 21 N herbivores = 30 N carnivores = 19

22 22 mean home range size (km 2 ) N 38.11 30 65.86 19 herbivorescarnivores F anova 23.97 P  0.001  carnivorous and herbivorous mammals do differ in home range size

23 23 herbivorescarnivores ungulatesCarnivora N = 49

24 24 herbivorescarnivores ungulatesCarnivora  home range size  home range size herbivorous dietcarnivorous diet N <> 49

25 25 Comparative method : techniques independent contrasts (Felsenstein 1985, 1988) Monte Carlo simulations (Garland et al. 1993) phylogenetic autocorrelation analysis (Cheverud et al. 1985) ancestral state reconstruction (Maddison 1990)...

26 26 Lacerta parva Algyroides fitzingeriAlgyroides nigropunctatus Lacerta chlorogasterLacerta oxycephalaPodarcis tauricaPodarcis tiliguerta Podarcis filfolensis Podarcis erhardiiPodarcis sicula Lacerta pater Lacerta viridis Takydromus sexlineatusLacerta jayakari Adolfus jacksoni Adolfus vauereselli Adolfus africanus Holaspis guentheriIchnotropis capensis Heliobolus spekii Eremias persica Eremias velox Acanthodactylus longipes Acanthodactylus scutellatusAcanthodactylus aureusAcanthodactylus pardalis Acanthodactylus boskianus Acanthodactylus haasiOphisops minor Mesalina brevirostris Mesalina guttulata Lacerta bedriagaeGallotia gallotiPodarcis muralisLacerta vivipara ground, vegetation ground, open saxicolous arboreal shrubs Comparative method : Lacertidae

27 27 Conclusions phylogenetic analysis (simulations) not clear whether differences in body shape are adaptations to microhabitat use  methodological issues not adapted (yet)

28 28 Conclusions phylogenetic analysis (simulations)  methodological issues (e.g. uncertainties topology, clustering habitat groups) not adapted (yet) no indications that differences in body shape are adaptations to microhabitat use

29 29 Lacerta parva Algyroides fitzingeriAlgyroides nigropunctatus Lacerta chlorogasterLacerta oxycephalaPodarcis tauricaPodarcis tiliguerta Podarcis filfolensis Podarcis erhardiiPodarcis sicula Lacerta pater Lacerta viridis Takydromus sexlineatusLacerta jayakari Adolfus jacksoni Adolfus vauereselli Adolfus africanus Holaspis guentheriIchnotropis capensis Heliobolus spekii Eremias persica Eremias velox Acanthodactylus longipes Acanthodactylus scutellatusAcanthodactylus aureusAcanthodactylus pardalis Acanthodactylus boskianus Acanthodactylus haasiOphisops minorMesalina brevirostris Mesalina guttulata Lacerta bedriagaeGallotia gallotiPodarcis muralisLacerta vivipara ground, vegetation ground, open saxicolous arboreal shrubs Uncertainties?

30 30 Lacerta parva Algyroides fitzingeriAlgyroides nigropunctatus Lacerta chlorogasterLacerta oxycephalaPodarcis tauricaPodarcis tiliguerta Podarcis filfolensis Podarcis erhardiiPodarcis sicula Lacerta pater Lacerta viridis Takydromus sexlineatusLacerta jayakari Adolfus jacksoni Adolfus vauereselli Adolfus africanus Holaspis guentheriIchnotropis capensis Heliobolus spekii Eremias persica Eremias velox Acanthodactylus longipes Acanthodactylus scutellatusAcanthodactylus aureusAcanthodactylus pardalis Acanthodactylus boskianus Acanthodactylus haasiOphisops minorMesalina brevirostris Mesalina guttulata Lacerta bedriagaeGallotia gallotiPodarcis muralisLacerta vivipara ground, vegetation ground, open saxicolous arboreal shrubs Clustering?

31 31 Conclusions phylogenetic analysis (simulations)  methodological issues (e.g. uncertainties topology, clustering habitat groups) not adapted (yet) no indications that differences in body shape are adaptations to microhabitat use

32 32 Outline of talk 1. correlative analysis 2. in-depth analysis traditional analysis phylogenetic analysis existence of trade-offs mechanistic basis performance variation ecological relevance of performance variation

33 33 2. In-depth analysis: following in Arnold’s footsteps  ecology  ‘design’  genotype  perfor- mance “ ability to carry out ecologically relevant task “ (sensu Huey & Stevenson 1979)

34 34 Outline of talk 1. correlative analysis 2. in-depth analysis traditional analysis phylogenetic analysis existence of trade-offs mechanistic basis performance variation ecological relevance of performance variation

35 35 ecology A ecology B ‘design’ A geno- type A species A species B ‘design’ B geno- type B perfor- mance A perfor- mance B x  differentiation trade-off Existence of trade-offs

36 36 Existence of trade-offs ecology A ecology B ‘design’ A geno- type A species B ‘design’ B geno- type B perfor- mance A perfor- mance B species A trade-off ?

37 37 Existence of trade-offs ecology A ecology B ‘design’ A geno- type A species B ‘design’ B geno- type B sprint speed endurance species A trade-off ? subset (12 lacertid species)

38 38 sprintersmarathoners fast twitch slow twitch vs

39 39 max speed over 25cm

40 40 0.22 m/s time till exhaustion

41 41 residual sprint speed (log10; cm/s) residual endurance (log10; s) -0.3-0.2-0.10.00.10.20.3 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 r I.C. = -0.75 p = 0.005 Trade-off sprint speed - endurance ?

42 42 Mechanistic basis trade-off ecology A ecology B geno- type A geno- type B sprint speed endurance trade-off subset (12 lacertid species) ‘design’ A ‘design’ B

43 43 svl mass limb lengths Mechanistic basis trade-off ecology A ecology B morpho- logy A geno- type A morpho- logy B geno- type B sprint speed endurance trade-off subset (12 lacertid species)

44 44 morpho- logy morpho- logy svl mass limb lengths Mechanistic basis trade-off ecology A ecology B geno- type A geno- type B sprint speed endurance trade-off subset (12 lacertid species)

45 45 Existence of trade-offs ecology A ecology B ‘design’ A geno- type A species B ‘design’ B geno- type B level vertical species A trade-off ? subset (13 lacertid species)

46 46 Biomechanical predictions horizontal locomotionvertical locomotion

47 47 tilt to 70° + slate = climbing + mesh = clambering max speed over 15cm

48 48 -0.3-0.2-0.1 0.00.1 0.2 0.3 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 residual climbing speed (log10; cm/s) residual sprint speed (log10; cm/s) r I.C. = 0.37 p = 0.21 Trade-off sprint speed - climbing speed ?

49 49 Trade-off sprint speed - clambering speed ? -0.3-0.2-0.10.00.10.20.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 residual clambering speed (log10; cm/s) residual sprint speed (log10; cm/s) r I.C. = 0.66 p = 0.01

50 50 Existence of trade-offs ecology A ecology B ‘design’ A geno- type A species B ‘design’ B geno- type B level vertical species A no trade-off subset (13 lacertid species)

51 51 Trade-off sprint speed - clambering speed ? -0.3-0.2-0.10.00.10.20.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 residual clambering speed (log10; cm/s) residual sprint speed (log10; cm/s)

52 52 svl mass limb lengths Mechanistic basis performance variation ecology A ecology B morpho- logy A geno- type A morpho- logy B geno- type B level vertical subset (13 lacertid species)

53 53 limb length morpho- logy Mechanistic basis performance variation ecology A ecology B geno- type A geno- type B level vertical subset (13 lacertid species)

54 54 the Anolis-way the Chameleon-way the lacertid way

55 55 Outline of talk 1. correlative analysis 2. in-depth analysis traditional analysis phylogenetic analysis existence of trade-offs mechanistic basis performance variation ecological relevance of performance variation

56 56 Ecological relevance micro- habitat A micro- habitat B ‘design’ A geno- type A ‘design’ B geno- type B perfor- mance A perfor- mance B

57 57 4m vegetation open vertical

58 58 Takydromus sexlineatus 0.00.10.20.30.40.50.60.70.80.91.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 vegetation open vertical

59 59 0.00.10.20.30.40.50.60.70.80.91.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 vegetation open vertical Acanthodactylus pardalis

60 60 Lacerta oxycephala 0.00.10.20.30.40.50.60.70.80.91.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 vegetation open vertical

61 61 strong interspecific variation habitat use terrarium ~ habitat use in nature Conclusions microhabitat use

62 62 open areas dense vegetation vertical elements endurance sprint speed ecologyperformance

63 63 proportion of time in open microhabitat (arcsine) 0.20.40.60.81.01.21.4 residual sprint speed (log10; cm/s) -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 r I.C. = 0.77 p = 0.005

64 64 r I.C. = -0.57 p = 0.069 0.20.40.60.81.01.21.4 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 proportion of time in open microhabitat (arcsine) residual endurance (log10; s)

65 65 open areas dense vegetation vertical elements endurance sprint speed behaviour ecologyperformance

66 66

67 67 species AsLvApTsLoLlGgPsLbPmPt 0.0 0.2 0.4 0.6 0.8 1.0 9411710370779098172273128184N = stay put flee proportion of observations

68 68 open areas dense vegetation vertical elements endurance sprint speed behaviour ecologyperformance manoeuvrability clamber speed

69 69 0.50 m max speed over 10cm

70 70 open areas dense vegetation vertical elements endurance sprint speed behaviour manoeuvrability ecologyperformance clamber speed x

71 71 open vertical vegetation species AsApLvLlLoTsPsGgPtPmLb proportion of observations 0.0 0.2 0.4 0.6 0.8 1.0 Fleeing tendency

72 72 behaviour open areas dense vegetation vertical elements endurance sprint speed behaviour manoeuvrability clamber speed ecologyperformance

73 73 open areas dense vegetation vertical elements endurance sprint speed behaviour manoeuvrability clamber speed climbing speed ecologyperformance

74 74 r I.C. = 0.57 p = 0.069 0.00.20.40.60.81.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 proportion of time on vertical elements (arcsine) residual climbing speed (log10; cm/s)

75 75 Conclusions performance  habitat use sprint speed ~ use of open habitats climbing speed ~ use of vertical elements manoeuvrability nor clambering speed ~ use of dense vegetation behavioural observations required

76 76  perfor- mance  ecology  ‘design’  genotype General conclusions  behaviour importance of phylogenetic analyses extending Arnold’s paradigm :

77 77


Download ppt "1 Evolution of locomotor performance in lacertid lizards Herpetologie – 22/05/2007."

Similar presentations


Ads by Google