Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fan Cart. F N F NA F g Fan Cart F N F NA F g.

Similar presentations


Presentation on theme: "Fan Cart. F N F NA F g Fan Cart F N F NA F g."— Presentation transcript:

1 Fan Cart

2

3

4

5

6 F N F NA F g

7 Fan Cart F N F NA F g

8 Fan Cart F N F NA F g

9 Fan Cart F N F NA F g =mg

10 Fan Cart F N =mg F NA F g =mg

11 Fan Cart F N =mg F NA =.12N F g =mg

12 Fan Cart F N =mg F NA =.12N F g =mg m=.550 kg

13 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m

14 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m

15 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m

16 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m

17 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.55kg

18 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.55kg

19 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.22m/s/s.55kg

20 Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.15m/s/s.80kg

21 Cart / Falling Object

22 Cart / Falling Object

23 Cart / Falling Object

24 Cart / Falling Object

25 Cart / Falling Object

26 Cart / Falling Object FgFg

27 Cart / Falling Object F g =mg

28 Cart / Falling Object F g =mg FNFN

29 Cart / Falling Object F g =mg FNFN FTFT

30 Cart / Falling Object F g =mg FNFN FTFT

31 Cart / Falling Object F g =mg FNFN FTFT FTFT

32 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =ma F T =ma

33 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a

34 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a

35 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a

36 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a

37 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a m f g=m f a+m c a m f g = a (m f +m c )

38 Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a m f g=m f a+m c a m f g = a (m f +m c )

39 Cart / Falling Object F g =mg FNFN FTFT FTFT NetF X =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a m f g=m f a+m c a m f g = a (m f +m c ) Acceleration = Force due gravity on falling object divided by total mass

40 Cart Falling Object Lab F G – F T = m f a F T =m c a m f g-m c a=m f a m f g=m c a+m f a m f g = (m c +m f )a m f g = a Weight =a (m c +m f ) (combined mass)

41 Block / Falling Object

42 Block / Falling Object F N F T F fr F T F G F G =m b g

43 Block / Falling Object F N F T F fr F T F G F G =m b g

44 Block / Falling Object F N F T F fr F T F G F G =m b g

45 Block / Falling Object F N F T F fr F T F G F G =m b g

46 Block / Falling Object F N F T F fr F T F G =m f g F G =m b g

47 Block / Falling Object F N F T F fr F T F G =m f g F G =m b g

48 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F G =m b g

49 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a F G =m b g

50 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a Net F =m f a F T -  m b g=m b a m f g-F T =m f a m f g-m f a=F T F G =m b g

51 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a Net F =m f a F T -  m b g=m b a m f g-F T =m f a m f g-m f a=F T F G =m b g

52 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a Net F =m f a F T -  m b g=m b a m f g-F T =m f a m f g-m f a=F T F G =m b g

53 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a Net F =m f a F T -  m b g=m b a m f g-F T =m f a m f g-m f a-  m b g=m b a m f g-m f a=F T F G =m b g

54 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a Net F =m f a F T -  m b g=m b a m f g-F T =m f a m f g-m f a-  m b g=m b a m f g-m f a=F T m f g-  m b g=m b a+m f a F G =m b g

55 Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T -  F N =m b a Net F =m f a F T -  m b g=m b a m f g-F T =m f a m f g-m f a-  m b g=m b a m f g-m f a=F T m f g-  m b g=m b a+m f a m f g-  m b g = a (m f g-  m b g)=a (m f +m c ) F G =m b g

56 Block Falling Object F G – F T = m f a F T -F fr =m b a m f g-m b a-  m b g=m f a F T = m b a+F fr F T = m b a +  m b g m f g-  m b g=m f a + m b a m f g –  m b g = (m b +m f )a m f g-  m b g = a Weight -Friction =a (m b +m f ) (combined mass)

57 Lab Frictionless incline

58 Lab Frictionless incline

59 Lab Frictionless incline F N F g

60 Lab Frictionless incline F N  F gpara F gperp

61 Lab Frictionless incline F N = mgcos   F gll =mgsin  F gper = mgcos 

62 Lab 4 Frictionless incline F gpara = mgsin  ma F N = F gperp = mgcos  gsin  a The acceleration of a cart on a frictionless incline is dependent on the acceleration due to gravity and the sin of the incline angle. It is independent of the mass of the object.

63 Lab 5 Block on incline involving friction

64 Lab 5 Block on incline involving friction

65 Lab 5 Block on incline involving friction

66 Lab 5 Block on incline involving friction F g =mg

67 Lab 5 Block on incline involving friction F g =mg

68 Lab 5 Block on incline involving friction F g =mg FNFN

69 Lab 5 Block on incline involving friction F g =mg F gy FNFN

70 Lab 5 Block on incline involving friction F g =mg F gper FNFN

71 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gpara

72 Lab 5 Block on incline involving friction F g =mg F gper FNFN F gpara

73 Lab 5 Block on incline involving friction F g =mg F gperp FNFN F gpara F fr

74 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular

75 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel

76 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos 

77 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin 

78 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos 

79 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos  F fr =  F N

80 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos  F fr =  F N  mgcos 

81 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos  F fr =  F N  mgcos  mgcos  =mgcos 

82 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos   f F gx = Static Friction mgcos  F fr =  F N  mgcos  mgcos  =mgcos 

83 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos   f F gx = Static Friction mgcos  F fr =  F N  mgcos  mgcos  =mgcos  If F gx > Static Friction mgsin  -  mgcos  =ma

84 Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos  mgsin  mgcos   f F gx = Static Friction mgcos  F fr =  F N  mgcos  mgcos  =mgcos  If F gx > Static Friction mgsin  -  mgcos  =ma

85 Lab 5 Block on incline involving friction Net F = Perpendicular to incline

86 Lab 5 Block on incline involving friction Net F = 0 Perpendicular to incline

87 Lab 5 Block on incline involving friction Net F = 0 Perpendicular to incline F gy =F N = mgcos 

88 Lab 5 Block on incline involving friction  F y = 0 Perpendicular to incline F perp =FN = mgcos 

89 Lab 5 Block on incline involving friction  F y = 0 Perpendicular to incline F perp =FN = mgcos 

90 Lab 5 Block on incline involving friction Fnet = 0 Perpendicular to incline F perp =F N = mgcos   F x = ____ if Force due to gravity parallel to incline equals static friction.

91 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction.

92 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel =

93 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr

94 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin  ==  mgcos  sin  =  cos  sin  =  tan  cos 

95 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin  ==  mgcos  sin  =  cos  sin  =  tan  cos 

96 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin  ==  mgcos  sin  =  cos  sin  =  tan  cos 

97 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin  ==  mgcos  sin  =  cos  sin  =  tan  cos 

98 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin  ==  mgcos  sin  =  cos  sin  =  tan  cos 

99 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

100 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

101 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

102 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

103 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

104 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

105 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

106 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

107 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

108 Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos  F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin  –  mgcos  ma gsin  –  cos  a

109 Lab 5 incline involving friction Force down – Friction = Net force mgsin  mgcos  ma gsin  - -  gcos  = a The acceleration of a cart incline is dependent on the acceleration due to gravity and angle of the incline and the coeffiecient of friction but not the mass of the object.

110 Lab 5 incline involving friction Force down – Friction = Net force mgsin  mgcos  ma gsin  - -  gcos  = a The acceleration of a cart incline is dependent on the acceleration due to gravity and angle of the incline and the coeffiecient of friction but not the mass of the object.

111

112 F net = F g heavy - F glight (m H +m L )a = m H g-m L g

113 F net = F g heavy - F glight (m H +m L ) a = m H g-m L g a = (m H g-m L g) (m H +m L )

114 Atwoods Pulley F net = F g heavy - F glight (m H +m L ) a = m H g-m L g a = (m H g-m L g) (m H +m L ) a = (Weight H – Weight L) ( total mass )

115 Atwoods Pulley F net = F g heavy - F glight (m H +m L ) a = m H g-m L g a = (m H g-m L g) (m H +m L ) a = (Weight H – Weight L) ( total mass )

116 Block on Incline Falling Mass

117

118 mg

119 Block on Incline Falling Mass mg mgsinf

120 Block on Incline Falling Mass mg mgsin 

121 Block on Incline Falling Mass mg mgsin   mgcos 

122 Block on Incline Falling Mass mg mgsin   mgcos  FTFT

123 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mg

124 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT

125 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT mfgmfg

126 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g - mgsin 

127 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos 

128 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos  m  m f  a

129 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos  m  m f  a Weight of Falling

130 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos  m  m f  a Weight of Falling - Force parallel

131 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos  m  m f  a Weight of Falling - Force parallel – Friction

132 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos  m  m f  a Weight of Falling - Force parallel – Friction = Net Force

133 Block on Incline Falling Mass mg mgsin   mgcos  FTFT mfgmfg FTFT m f g – mgsin  mgcos  m  m f  a m f g – mgsin  mgcos  a  m  m f  Weight of Falling - Force parallel – Friction = Net Force


Download ppt "Fan Cart. F N F NA F g Fan Cart F N F NA F g."

Similar presentations


Ads by Google