Presentation is loading. Please wait.

Presentation is loading. Please wait.

Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team.

Similar presentations


Presentation on theme: "Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team."— Presentation transcript:

1 Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team

2 Context Presentation at the collimation working group in March 2012 Long-standing action for the impedance team, needed to wait for: – the eigenmode solver with dispersive material – Indication that the simulations are relevant (very important for a complicated geometry such as the TCTP)

3 PhD thesis of Hugo Day (2013) Ferrite considered was 8C11 at the time

4 Simulations of longitudinal impedance Very heavy simplifications from the initial CATIA file from Luca Gentini In particular, RF fingers at entry and exit needed to be replaced by a sheet, and was anyway badly meshed. Angle of the RF fingers adapted to the jaw position in order to keep contact, however can be different for the real collimator 1.7 M mesh cells All materials perfect conductors, except the ferrite, in order to get rid of the resistive wall losses from the jaw Of course, there is uncertainty on ferrite parameters Half gap scanned between 1mm and 10 mm

5 Additional assumptions Impedance which will heat the ferrite should be broadband Need to suppress the losses from the resistive wall  use perfect conductor everywhere except for ferrite and assume that superposition is possible.

6 Simulations of longitudinal impedance Frequency in GHz Longitudinal Impedance in Ohm 1 mm 10 mm Half gap= 1mm Half gap= 10mm  Opening the gap leads to an increase of the amplitude of broad modes  More heating to ferrrite with gap open  Of course, this is not true for resistive wall heating to the jaws

7 Superposition of beam spectrum with impedance (50 ns beam) Power contribution in W Frequency in Hz  Main contribution from the broad peaks around 500 MHz, peaks beyond 1 GHz only significant for the Gaussian distribution

8 Superposition of beam spectrum with impedance (25 ns beam) Power contribution in W Frequency in Hz

9 Power loss (post-LS1, 25 ns, bunch length = 7.5 cm)  50% to 100% of this heat load goes to the two lines of ferrite

10 Power loss (post-LS1, 25 ns, bunch length = 9 cm)  50% to 100% of this heat load goes to the two lines of ferrite

11 Power loss vs gap (post-LS1, 50 ns)  50% to 100% of this heat load goes to the two lines of ferrite

12 Power loss vs gap (HL-LHC, 50 ns)  50% to 100% of this heat load goes to the two lines of ferrite

13 Power loss vs gap (HL-LHC, 25 ns)  50% to 100% of this heat load goes to the two lines of ferrite

14 Summary Heat load to the ferrite can reach of the order of 5 W per side Opening the gap increases the heat load After LS1, with standard bunch length of 9 cm, we expect on the order of 1 W in the ferrite per side

15


Download ppt "Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team."

Similar presentations


Ads by Google