Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.

Similar presentations


Presentation on theme: "Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica."— Presentation transcript:

1 Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna 17 35.45 8 16.00 92 238.0 90 232.0 53 126.9 68 167.3 57 138.9 5 10.81

2 2 Industrial Significance  Boron-containing free radicals Chemical vapor deposition Semiconductor doping Etching of circuit elements  BH 2 In situ detection of BH 2 by the Atkinson group 1  Intracavity laser spectroscopy  Plasma dissociation of B 2 H 6 Similar condition used in the industrial boron deposition and boron-containing films 1: D. C. Miller, J. J. O’Brien, and G. H. Atkinson, J. Appl. Phys. 65, 2645 (1989).

3 3 Background  Experimental Studies Absorption spectrum in the 640-870 nm region 2 Flash photolysis of H 3 BCO Linear-bent transition: 2 B 1 ( П u ) – 2 A 1 Ground state geometry determined Electron spin resonance spectrum in Ar matrix by Knight, Jr. et al. (1989): 3 Hyperfine parameter determined 2: G. Herzberg and J. W. C. Johns, Proc. R. Soc. London, 298A, 142 (1967). 3: L. B. Knight, Jr., M. Winiski, P. Miller, C. A. Arrington, and D. Feller. J. Chem. Phys. 91, 4468 (1989).

4 Linear-Bent Transition 4 X 2 A 1 : (2a 1 ) 2 (1b 2 ) 2 (3a 1 ) 1 A 2 B 1 : (2a 1 ) 2 (1b 2 ) 2 (1b 1 ) 1 Θ = 129.1 ° r e = 1.184 Å Θ = 180 ° r e = 1.168 Å 2Пu2Пu ~ ~ CCSD(T)/cc-pV5Z calculations

5 5 Background  Theoretical Studies Perić et al. (1980) 4  Renner-Teller coupling and large amplitude motion Re-numbered v 2 ′ Brommer et al.(1992) 5  3-D PES’s Anharmonicity, rotation-vibration, and electronic angular momenta coupling Rovibronic energies calculated by variational method Kolbuszewski et al.(1996) 6  Spin-orbit coupling included 4: M. Perić, S. D. Peyerimhoff, and R. J. Buenker, Can. J. Chem, 59, 1318 (1981). 5: M. Brommer, P. Rosmus, S. Carter, and N. C. Handy. Mol. Phys. 77, 549 (1992). 6: M. Kolbuszewski, P. R. Bunker, W. P. Kraemer, G. Osmann, and P. Jensen. Mol. Phys. 88, 105 (1996).

6 Pulsed Discharge Jet Apparatus 6 Gas Mixture: 0.5% B 2 H 6 or B 2 D 6 in 40 psi Ar Products: 11 BH 2, 10 BH 2, 11 BD 2, and 10 BD 2

7 7 LIF Spectra (0,2 15,0) Mohammed 10 BH 2 10 BD 2

8 8 Linear-Bent Transition v 2 =0 2 П 1/2 1 2 П 3/2 2A12A1 2B1(П)2B1(П) v 2 =1 v 2 =2 K 0 0 2 3 1 1 2 П 1/2 2 П 3/2 2 П 1/2 2 П 3/2 2 Ф 5/2 2 Ф 7/2 2 Σ 1/2 2 Δ 5/2 2 Δ 3/2 K = | ± Λ ± l | = |1 ± l | 2П2П v 2 =1 v 2 =2 K 1 0 KaKa 0 1 2 3 v 2 =0 v 2 =1 0 1 2 3 1B1(П)1B1(П) 1A11A1 1П1П  K a = ±1 Σ П

9 LIF Spectra 9 v 2 ′ =10111213141516171819 v 2 ′=14 15161718192021222324 П Σ Σ Σ Σ Σ П П П П П П П П П П Σ Σ Σ Σ Σ

10 10 BH 2 (0,2 10,0) П Band 2B1(П)2B1(П) 1 10 11 2 12 П 01 1 K a " = 0 00 0 02 2 K a " = 2 21 2 20  K a = ±1  K c = 0, ±2 2A12A1

11 11 BH 2 (0,2 15,0) Σ and Δ Bands 11 BH 2 10 BH 2 p R 1 (1) 00 0 02 2 01 1 2B1(П)2B1(П) 21 2 20 22 3 21 Σ Δ 1 10 11 2 12 2A12A1 K a " = 1 r R 1 (1)

12 12 Theoretical Study Riccardo

13 V5Z: CCSD(T)/cc-pV5Z, only valence electron correlated Calc. – Expt. (cm -1 ) 11 BH 2 Band Origin (cm -1 ) V5Z+CC: CCSD(T)/cc-pV5Z + core electron correlation CBS+CC+DFCI+DBOC: complete basis set extrapolation + core electron correlation+ residual valence correlation beyond triple excitations +diagonal Born- Oppenheimer correction (isotope effect) CBS+CC: complete basis set extrapolation + core electron correlation CBS+CC+DFCI: complete basis set extrapolation + core electron correlation+ residual valence correlation beyond triple excitations Theory vs Experiment 13

14 LIF Spectra 14 v 2 ′ =10 111213141516171819 v 2 ′=1415161718192021222324 (1,v 2,0) 10 111213 14 1516171819 20 1312

15 15 Ground State Molecular Structure 1 10 11 2 12 01 1 K a " = 0 00 0 02 2 K a " = 2 21 2 20 11 BH 2 2B1(П)2B1(П) 2A12A1 4(A-B) – 11 BD 2 1 10 11 2 12 01 1 K a " = 0 00 0 02 2 K a " = 2 21 2 20 F(J,K a ) = (A-B)K a 2 + BJ(J+1) – – A= 41.6 cm -1 A= 23.3 cm -1

16 16 High-Resolution LIF Spectrum ( 11 BD 2 ) K′=1←K a " =0 K′=1←K a " =2 (0,2 20,0) П Mohammed pR(N")pR(N") rR(N")rR(N") pQ(N")pQ(N") pP(N")pP(N") rQ(N")rQ(N") rP(N")rP(N") 2 02 2 46 2 4 345 2 34 2 345

17 17 Molecular Structure 129.6(2)º [129.9º] [Theory: CCSD(T)/cc-pV5Z] 1.197 (2) Å [1.195 Å] Rotational Constants 11 BH 2 *11 BD 2 A0A0 41.649(8)23.321(1) B0B0 7.241(1)3.627(2) C0C0 6.001(2)3.094(2) *Herzberg and Johns 1.181 Å, 131º

18 18 11 BH 2 Emission Spectrum K a ' = 1 Relative Energy (cm -1 ) 1 01 3 03 2 21 3 21 2 11 v" = 0 v 2 " = 1 v 2 " = 2 v 1 " = 1 Pump r R 0 (1) (0,2 12,0) П K a " = 2 K a " = 0 Pump  K a = ±1  K c = 0, ±2

19 19 Ground State Energy Levels cm -1 (v 1, v 2, v 3 )N Ka Kc Expt. (±2)Calc.Calc. – Expt. (0,1,0)1 01 986.7986.0-0.7 1 10 1032.61033.00.4 2 12 1059.31060.81.5 2 21 1200.21198.2-2.0 3 03 1051.81053.21.4 3 21 1238.71238.1-0.6 3 30 1447.51445.6-1.9 (0,2,0)1 01 1924.51924.0-0.5 1 10 1959.71957.5-1.8 2 21 2195.12192.4-2.7 3 03 1990.71989.7 3 21 2235.42232.4-3.0 (1,0,0)1 01 2519.92521.21.3 3 21 2716.52719.42.9

20 20 Summary LIF spectra of 11 BH 2, 10 BH 2, 11 BD 2, and 10 BD 2 475-830 nm Calculations of ro-vibronic energy levels Including the spin-orbit effect Pure ab initio High-Resolution LIF spectrum of 11 BD 2 Ground state molecular structure refined Emission spectra of 11 BH 2 and 11 BD 2  Ground state vibrational energy levels

21 21


Download ppt "Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica."

Similar presentations


Ads by Google