Presentation is loading. Please wait.

Presentation is loading. Please wait.

2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv:1101.0872[hep-th]

Similar presentations


Presentation on theme: "2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv:1101.0872[hep-th]"— Presentation transcript:

1 2011 年 4 月 27 日 SAL@KEK 1 吉田豊 Y. Yoshida arXiv:1101.0872[hep-th]

2 2011 年 4 月 27 日 SAL@KEK 2 Moore, Nekrasov & Shatashivli (1998), Nekrasov(2002) Instanton partition function in N =2 4-dim SYM k -Instanton partition function by Localization formula ex) G=U(N) vector multiplet Instanton number

3 2011 年 4 月 27 日 SAL@KEK 3 Instanton partition function with surface operator in N =2 SYM Alday et al(2009), Alday & Tachikawa, Bruzzo et al(2010) Instanton numberThe first Chern number Dimofte, Gukov & Hollands (2010) : Vortex partition function in N =(2,2) 2dim SQED ?

4 2011 年 4 月 27 日 SAL@KEK 4 The moduli space of abelian vortex with vortex number k in two dimension is isomorphic to Jaffe & Taubes(1980) Equivariant character k -vortex partition function for N =(2,2) SQED with single chiral multiplet contour integral representation

5 2011 年 4 月 27 日 SAL@KEK 5 Contribution from a vector multiplet Contribution from a chiral multiplet vortex partition function of N =(2,2) SQED with chiral multiplet ? twisted mass

6 2011 年 4 月 27 日 SAL@KEK 6 5d Nekrasov partition(K-theoretic instanton counting) Introduction of Surface operator Introduction of A-brane Closed A-model on toric CY G=U(1) 4-dim pure N =2 SYM ex) Theory induced on the surface operator is N =(2,2) U(1) SQED with single chiral mutiplet string sidegauge theory side Kozcaz, Pasquetti & Wyllard(2010)

7 1. Introduction  2.Vortices in 2d super Yang-Mills theories  3. Localization of vortex in N =(2,2) SYM  4. Vortex partition and equivariant character  5. Relation to geometric indices  6. Summary 2011 年 4 月 27 日 SAL@KEK 7

8 8 Vortex equation (Bogomol’nyi equation) with G=U(N) 1.This equation preserves half of the supersymmetry. 2. On-shell action. Vortex number is defined by the first Chern number complexified FI-parameter

9 2011 年 4 月 27 日 SAL@KEK 9 Super YM theory with 8 SUSY (2-dim N =(4,4) SYM) The vector multiplet in N =(4,4) SYM consists of Hypermultiplets in N=(4,4) theory consists of matter content of N =(4,4) theory N =(2,2) vector multiplet N =(2,2) adjoint chiral multiplet N =(2,2) fundametnal chiral multiplet N =(2,2) anti-fundametnal chiral multiplet

10 2011 年 4 月 27 日 SAL@KEK 10 Vacuum (Higgs branch) r:FI-parameter Symmetry group of Vacuum Bosonic part of Lagrangian Global gauge group Flavor group twisted mass

11 2011 年 4 月 27 日 SAL@KEK 11 k -vortex moduli space in ( p+2 )-dim U(N) SYM with 8 SUSY by k D p - N D( p+2 ) brane construction(Hanany & Tong 2002) 0 1 2 3 4 5 6 7 8 9 NS5 o o o o o o D2 o o o D0 o vortex partition function(zero mode theory) in N =(4,4) SYM from brane system

12 2011 年 4 月 27 日 SAL@KEK 12 D0-D0 D0-D2 I : orientational moduli B : translational moduli DRED of vector with gauge group DRED of adjoint chiral multiplet DRED of chiral malutiplet

13 2011 年 4 月 27 日 SAL@KEK 13 :k-vortex partition functions Chen and Tong (2006)  Mass deformation D-term condition The moduli space of k -vortexEto et al(2005) Hanany & Tong(2002) We consider mass deformation N =(4,4) theory. Taking large mass limit, we obtain N =(2,2) SYM with N chiral multiplets. Edalati & Tong (2007)

14 2011 年 4 月 27 日 SAL@KEK 14 DRED of 2d (0,2) chiral multipet DRED of 2d (0,2) fermi multipet In the presence of the mass term, vortex partition function is deformed multiplets decouple from the vortex theory heavy mass limit

15 2011 年 4 月 27 日 SAL@KEK 15  k -vortex partition function for N =(2,2) U(N) SYM with N -fundamental matter with This action is expressed in Q-exact form

16 2011 年 4 月 27 日 SAL@KEK 16 SUSY transformation generates the following vector field on Nekrasov (2002) Bruzzo et al (2002) Superdeterminant

17 2011 年 4 月 27 日 SAL@KEK 17 k -vortex parition function in G=U(N) N =(2,2) SYM N -flavor Vortex partition function in G=U(1) N =(2,2) SQED This agree with the result from the equivariant character

18 2011 年 4 月 27 日 SAL@KEK 18 We introduce the following torus action  Vortex moduli space

19 2011 年 4 月 27 日 SAL@KEK 19 At the fixed points, we can decompose the representation space as Gauge transformation Restriction map  Fixed point condition

20 2011 年 4 月 27 日 SAL@KEK 20 2d partition (Young diagram) 1d partition In the case of 4-dim instanton… In the case of 2-dim vortex

21 2011 年 4 月 27 日 SAL@KEK 21 character of each spaces Infinitesimal gauge transformation Tangent space of k -vortex moduli space

22 2011 年 4 月 27 日 SAL@KEK 22 equivariant character 3d vortex partition function Replacement

23 2011 年 4 月 27 日 SAL@KEK 23 -genus of complex manifold M Equivariant case The fixed points The weight at the point

24 2011 年 4 月 27 日 SAL@KEK 24 3d vortex partition function This corresponds to geometric genus This corresponds to Euler number N =(2,2) case N =(4,4) case

25  We have obtained N =(2,2) vortex partition function from the mass deformation of N =(4,4) vortex partition function.  N =(2,2) vortex partition function can be written with Q-exact form ⇒ We can apply Localization formula ・ especially we reproduce abelian vortex from open BPS state counting or equivariant character of  Vortex parition function is expressed by 1d partition Cf) Nekrasov partition is expressed by 2d partition(Young diagram). 3d vortex partition is related to certain geometric indices of the k -vortex moduli space  Future direction Relation to integrable structure( KP hierarchy, spin chain), etc… 2011 年 4 月 27 日 SAL@KEK 25


Download ppt "2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv:1101.0872[hep-th]"

Similar presentations


Ads by Google