Presentation is loading. Please wait.

Presentation is loading. Please wait.

Pg. 223/224/234 Homework Pg. 235 #3 – 15 odd Pg. 236#65 #31 y = 3; x = -2 #33y = 2; x = 3 #35 y = 1; x = -4#37f(x) → 0 #39 g(x) → 4 #41 D:(-∞, 1)U(1, ∞);

Similar presentations


Presentation on theme: "Pg. 223/224/234 Homework Pg. 235 #3 – 15 odd Pg. 236#65 #31 y = 3; x = -2 #33y = 2; x = 3 #35 y = 1; x = -4#37f(x) → 0 #39 g(x) → 4 #41 D:(-∞, 1)U(1, ∞);"— Presentation transcript:

1 Pg. 223/224/234 Homework Pg. 235 #3 – 15 odd Pg. 236#65 #31 y = 3; x = -2 #33y = 2; x = 3 #35 y = 1; x = -4#37f(x) → 0 #39 g(x) → 4 #41 D:(-∞, 1)U(1, ∞); R: {½}; y = ½; no VA #43 stretch 2, right 1, reflect x – axis, up 3 #48 x ≥ 169.12 oz #1 D:(-∞, -1)U(-1, 1)U(1, ∞)

2 4.1/4.2 Rational Functions, Asymptotes and Graphs Basic Information Domain is determined by the existence or the denominator. Horizontal Asymptotes tell you the potential end behavior of a function. They can be crossed “in the middle.” Vertical Asymptotes occur when the function heads to ±∞ from either side of a value. They can not be crossed. Vertical Asymptotes are found when the denominator is set equal to zero and solved. Horizontal Asymptotes are determined by the degrees in the numerator and denominator. – Top Heavy means there is no Horizontal Asymptote, but there is a Diagonal Asymptote of sorts. – Bottom Heavy means the Horizontal Asymptote is y = 0 – Equal Degrees means the Horizontal Asymptote is where a and b are coefficients of the degree terms in the numerator and denominator

3 4.1/4.2 Rational Functions, Asymptotes and Graphs Steps to Graphing Rational Functions Determine both the x and y intercepts. (How?) Find the Vertical Asymptotes. Find the End Behavior, and any Horizontal Asymptotes. Find values of f(x) on either side of the vertical asymptote(s) and use the calculator to help finish the graph! Examples Graph the following rational functions using the given steps provided to the left.

4 4.1/4.2 Rational Functions, Asymptotes and Graphs Hidden Asymptotes Sometimes there will be an asymptote that is not perfectly horizontal or vertical. This occurs when the degrees are “Top Heavy” To find the “hidden” asymptote when the functions are “Top Heavy” you must divide the functions out. Examples Graph the following rational function using the given steps provided.


Download ppt "Pg. 223/224/234 Homework Pg. 235 #3 – 15 odd Pg. 236#65 #31 y = 3; x = -2 #33y = 2; x = 3 #35 y = 1; x = -4#37f(x) → 0 #39 g(x) → 4 #41 D:(-∞, 1)U(1, ∞);"

Similar presentations


Ads by Google