Download presentation
Presentation is loading. Please wait.
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
1
Warm-Up 3/27-28 1. Find the measure of 𝜃. sin 𝜃= 14 16 𝜃= sin −1 14 16
𝜃=61°
3
Rigor: You will learn how to find reference angles, to evaluate and determine sign of trig functions of any angle. Relevance: You will be able to solve real world problems using reference angles. MA.912. A.2.11
4
Trig 3: Trigonometric Functions on the Unit Circle
5
𝑟= 𝑥 2 + 𝑦 2 𝑦 𝑟 (x, y) sin 𝜃 = r 𝑥 𝑟 y cos 𝜃 = θ 𝑦 𝑥 tan 𝜃 = ,𝑥≠0 x
6
Trigonometric Functions of Any Angle
7
Example 1: Let (8, –6) be a point on the terminal side of and angle in standard position. Find the exact values of the three basic trig functions of . 𝑟= −6 2 = 100 𝑟=10 8 = −6 10 =− 3 5 s𝑖𝑛 𝜃= 𝑦 𝑟 ’ – 6 10 = 8 10 = 4 5 cos 𝜃= 𝑥 𝑟 = −6 8 ta𝑛 𝜃= 𝑦 𝑥 =− 3 4
8
r = 1 For 0° or 360°, use the coordinate (1, 0)
For 90°, use the coordinate (0, 1) For 180°, use the coordinate (– 1, 0) For 270°, use the coordinate (0, – 1 )
9
Example 2: Find the exact value of each trigonometric function, if defined. If not defined, write undefined. a. sin(– 180) b. tan 3𝜋 2 = 𝑦 𝑟 = 0 1 =0 P(– 1 , 0), r = 1 = 𝑦 𝑥 = −1 0 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 P(0 , – 1), r = 1
10
Reference Angle: an acute angle formed by the terminal side and the x-axis.
11
Example 3: Sketch each angle. Then find the reference angle. a
Example 3: Sketch each angle. Then find the reference angle. a. – 150 b. 3𝜋 4 180 – 150 = 30 ’= 30 = – 150 𝜃= 3𝜋 4 4𝜋 4 − 3𝜋 4 = 𝜋 4 ’= 𝜋 4
12
𝑟= 𝑥 2 + 𝑦 2 (cos, sin) 𝑦 𝑟 sin 𝜃 = 𝑥 𝑟 cos 𝜃 = 𝑦 𝑥 tan 𝜃 = ,𝑥≠0 𝑟=1
𝑟= 𝑥 2 + 𝑦 2 (cos, sin) 𝑦 𝑟 (x, y) sin 𝜃 = 𝑥 𝑟 cos 𝜃 = r y 𝑦 𝑥 tan 𝜃 = ,𝑥≠0 θ 𝑟=1 x sin 𝜃 =𝑦 cos 𝜃 =𝑥 tan 𝜃 = sin 𝜃 cos 𝜃
13
(cos, sin) tan 𝜃 = sin 𝜃 cos 𝜃 Quadrant II Quadrant I Quadrant III
(–x , +y) (+x, +y) sin : cos : tan : + – sin : cos : tan : + tan 𝜃 = sin 𝜃 cos 𝜃 Students ALL Quadrant III Quadrant IV (–x , –y) (+x , –y) sin : cos : tan : – + sin : cos : tan : – + Take Calculus
14
EVALUATING TRIG FUNCTIONS AT ANY ANGLE Find the reference angle.
Find the corresponding trig value. Determine the sign of the angle. y O x ’
15
2 2 1 2 3 2 3 2 2 2 1 2 3 3 1 3
16
Example 4: Find the exact value of each expression. a. cos (– 240)
=− 1 2 = – cos 60 y ’= 60 x
17
Checkpoints: 1. Find the exact values of the three basic trig functions of given (– 4 , 3). r = 5, sin 𝜃 = 3 5 , cos 𝜃 =− 4 5 , tan 𝜃 =− 3 4 2. Find the exact value of the trig function cos 𝜋 . r = 1, cos 𝜋 = 𝑥 𝑟 = −1 1 =−1 3. Sketch the angle and then find the reference angle of 300. 4. Find the exact value of the trig function tan 7𝜋 6 . Quadrant III tan is positive. tan 𝜋 6 = =
18
Assignment 4-3 Worksheet 1-19 all
19
Warm-Up 3/28 1. Find the exact value of the trig function sin 𝜋 2 .
r = 1, sin 𝜋 = 𝑦 𝑟 = 1 1 =1 2. Find the exact value of the trig function cos 120° . Quadrant II cos is negative. − cos 60° =− 1 2
20
Assignment 4-3 Worksheet 1-19 all
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.