Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm-Up 3/ Find the measure of

Similar presentations


Presentation on theme: "Warm-Up 3/ Find the measure of "β€” Presentation transcript:

1 Warm-Up 3/27-28 1. Find the measure of πœƒ. sin πœƒ= 14 16 πœƒ= sin βˆ’1 14 16
πœƒ=61Β°

2

3 Rigor: You will learn how to find reference angles, to evaluate and determine sign of trig functions of any angle. Relevance: You will be able to solve real world problems using reference angles. MA.912. A.2.11

4 Trig 3: Trigonometric Functions on the Unit Circle

5 π‘Ÿ= π‘₯ 2 + 𝑦 2 𝑦 π‘Ÿ (x, y) sin πœƒ = ο‚· r π‘₯ π‘Ÿ y cos πœƒ = ΞΈ 𝑦 π‘₯ tan πœƒ = ,π‘₯β‰ 0 x

6 Trigonometric Functions of Any Angle

7 Example 1: Let (8, –6) be a point on the terminal side of and angle in standard position. Find the exact values of the three basic trig functions of . π‘Ÿ= βˆ’6 2 = 100 π‘Ÿ=10 8 = βˆ’6 10 =βˆ’ 3 5 s𝑖𝑛 πœƒ= 𝑦 π‘Ÿ ’ – 6 10 = 8 10 = 4 5 cos πœƒ= π‘₯ π‘Ÿ = βˆ’6 8 ta𝑛 πœƒ= 𝑦 π‘₯ =βˆ’ 3 4

8 r = 1 For 0Β° or 360Β°, use the coordinate (1, 0)
For 90Β°, use the coordinate (0, 1) For 180Β°, use the coordinate (– 1, 0) For 270Β°, use the coordinate (0, – 1 )

9 Example 2: Find the exact value of each trigonometric function, if defined. If not defined, write undefined. a. sin(– 180ο‚°) b. tan 3πœ‹ 2 = 𝑦 π‘Ÿ = 0 1 =0 P(– 1 , 0), r = 1 = 𝑦 π‘₯ = βˆ’1 0 𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 P(0 , – 1), r = 1

10 Reference Angle: an acute angle formed by the terminal side and the x-axis.

11 Example 3: Sketch each angle. Then find the reference angle. a
Example 3: Sketch each angle. Then find the reference angle. a. – 150ο‚° b. 3πœ‹ 4 180ο‚° – 150ο‚° = 30ο‚° ’= 30ο‚°  = – 150 ο‚° πœƒ= 3πœ‹ 4 4πœ‹ 4 βˆ’ 3πœ‹ 4 = πœ‹ 4 ’= πœ‹ 4

12 π‘Ÿ= π‘₯ 2 + 𝑦 2 (cos, sin) 𝑦 π‘Ÿ sin πœƒ = π‘₯ π‘Ÿ cos πœƒ = 𝑦 π‘₯ tan πœƒ = ,π‘₯β‰ 0 π‘Ÿ=1
π‘Ÿ= π‘₯ 2 + 𝑦 2 (cos, sin) 𝑦 π‘Ÿ (x, y) sin πœƒ = ο‚· π‘₯ π‘Ÿ cos πœƒ = r y 𝑦 π‘₯ tan πœƒ = ,π‘₯β‰ 0 ΞΈ π‘Ÿ=1 x sin πœƒ =𝑦 cos πœƒ =π‘₯ tan πœƒ = sin πœƒ cos πœƒ

13 (cos, sin) tan πœƒ = sin πœƒ cos πœƒ Quadrant II Quadrant I Quadrant III
(–x , +y) (+x, +y) sin : cos : tan : + – sin : cos : tan : + tan πœƒ = sin πœƒ cos πœƒ Students ALL Quadrant III Quadrant IV (–x , –y) (+x , –y) sin : cos : tan : – + sin : cos : tan : – + Take Calculus

14 EVALUATING TRIG FUNCTIONS AT ANY ANGLE Find the reference angle.
Find the corresponding trig value. Determine the sign of the angle. y  O x ’

15 2 2 1 2 3 2 3 2 2 2 1 2 3 3 1 3

16 Example 4: Find the exact value of each expression. a. cos (– 240ο‚°)
=βˆ’ 1 2 = – cos 60ο‚° y ’= 60ο‚° x

17 Checkpoints: 1. Find the exact values of the three basic trig functions of  given (– 4 , 3). r = 5, sin πœƒ = 3 5 , cos πœƒ =βˆ’ 4 5 , tan πœƒ =βˆ’ 3 4 2. Find the exact value of the trig function cos πœ‹ . r = 1, cos πœ‹ = π‘₯ π‘Ÿ = βˆ’1 1 =βˆ’1 3. Sketch the angle and then find the reference angle of 300ο‚°. 4. Find the exact value of the trig function tan 7πœ‹ 6 . Quadrant III tan  is positive. tan πœ‹ 6 = =

18 Assignment 4-3 Worksheet 1-19 all

19 Warm-Up 3/28 1. Find the exact value of the trig function sin πœ‹ 2 .
r = 1, sin πœ‹ = 𝑦 π‘Ÿ = 1 1 =1 2. Find the exact value of the trig function cos 120Β° . Quadrant II cos  is negative. βˆ’ cos 60Β° =βˆ’ 1 2

20 Assignment 4-3 Worksheet 1-19 all


Download ppt "Warm-Up 3/ Find the measure of "

Similar presentations


Ads by Google