Download presentation
1
Warm-Up 3/27-28 1. Find the measure of π. sin π= 14 16 π= sin β1 14 16
π=61Β°
3
Rigor: You will learn how to find reference angles, to evaluate and determine sign of trig functions of any angle. Relevance: You will be able to solve real world problems using reference angles. MA.912. A.2.11
4
Trig 3: Trigonometric Functions on the Unit Circle
5
π= π₯ 2 + π¦ 2 π¦ π (x, y) sin π = ο· r π₯ π y cos π = ΞΈ π¦ π₯ tan π = ,π₯β 0 x
6
Trigonometric Functions of Any Angle
7
Example 1: Let (8, β6) be a point on the terminal side of and angle in standard position. Find the exact values of the three basic trig functions of ο±. π= β6 2 = 100 π=10 8 = β6 10 =β 3 5 sππ π= π¦ π ο±β β 6 10 = 8 10 = 4 5 cos π= π₯ π = β6 8 taπ π= π¦ π₯ =β 3 4
8
r = 1 For 0Β° or 360Β°, use the coordinate (1, 0)
For 90Β°, use the coordinate (0, 1) For 180Β°, use the coordinate (β 1, 0) For 270Β°, use the coordinate (0, β 1 )
9
Example 2: Find the exact value of each trigonometric function, if defined. If not defined, write undefined. a. sin(β 180ο°) b. tan 3π 2 = π¦ π = 0 1 =0 P(β 1 , 0), r = 1 = π¦ π₯ = β1 0 π’ππππππππ P(0 , β 1), r = 1
10
Reference Angle: an acute angle formed by the terminal side and the x-axis.
11
Example 3: Sketch each angle. Then find the reference angle. a
Example 3: Sketch each angle. Then find the reference angle. a. β 150ο° b. 3π 4 180ο° β 150ο° = 30ο° ο±β= 30ο° ο± = β 150 ο° π= 3π 4 4π 4 β 3π 4 = π 4 ο±β= π 4
12
π= π₯ 2 + π¦ 2 (cosο±, sinο±) π¦ π sin π = π₯ π cos π = π¦ π₯ tan π = ,π₯β 0 π=1
π= π₯ 2 + π¦ 2 (cosο±, sinο±) π¦ π (x, y) sin π = ο· π₯ π cos π = r y π¦ π₯ tan π = ,π₯β 0 ΞΈ π=1 x sin π =π¦ cos π =π₯ tan π = sin π cos π
13
(cosο±, sinο±) tan π = sin π cos π Quadrant II Quadrant I Quadrant III
(βx , +y) (+x, +y) sinο± : cosο± : tanο± : + β sinο± : cosο± : tanο± : + tan π = sin π cos π Students ALL Quadrant III Quadrant IV (βx , βy) (+x , βy) sinο± : cosο± : tanο± : β + sinο± : cosο± : tanο± : β + Take Calculus
14
EVALUATING TRIG FUNCTIONS AT ANY ANGLE Find the reference angle.
Find the corresponding trig value. Determine the sign of the angle. y ο± O x ο±β
15
2 2 1 2 3 2 3 2 2 2 1 2 3 3 1 3
16
Example 4: Find the exact value of each expression. a. cos (β 240ο°)
=β 1 2 = β cos 60ο° y ο±β= 60ο° x
17
Checkpoints: 1. Find the exact values of the three basic trig functions of ο± given (β 4 , 3). r = 5, sin π = 3 5 , cos π =β 4 5 , tan π =β 3 4 2. Find the exact value of the trig function cos π . r = 1, cos π = π₯ π = β1 1 =β1 3. Sketch the angle and then find the reference angle of 300ο°. 4. Find the exact value of the trig function tan 7π 6 . Quadrant III tan ο± is positive. tan π 6 = =
18
Assignment 4-3 Worksheet 1-19 all
19
Warm-Up 3/28 1. Find the exact value of the trig function sin π 2 .
r = 1, sin π = π¦ π = 1 1 =1 2. Find the exact value of the trig function cos 120Β° . Quadrant II cos ο± is negative. β cos 60Β° =β 1 2
20
Assignment 4-3 Worksheet 1-19 all
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.