Presentation is loading. Please wait.

Presentation is loading. Please wait.

Symmetry of position: periodic order

Similar presentations


Presentation on theme: "Symmetry of position: periodic order"— Presentation transcript:

1 Symmetry of position: periodic order
Lattice : Set of points (nodes): Ruvw = u a +v b + w c (a, b, c) basis, (u, v, w) integers. a b c g Unit cell : Volume with no gaps or overlaps, gal parallelepipedic (a,b,c) Primitive (one node), multiple (symmetry) : elementary (unit cell) Conventionnal unit cells : P : Primitive F : Face-centred I : Body-centred A,B,C : Base-centred

2 Point symmetry of lattices
Only 1-, 2-, 3- 4-, 6-fold symmetries are compatible with periodicity Every symmetry axe An is normal to a lattice plane Symmetry of this plane An BB’ lattice vector BB’=T-2Tcosa =mT cosa =p/2 An A2 A’2 T T a=p a=p a=2p /n B B’ An(T) A-n(-T) a -a An T A’n

3 Towards Penrose tilling
Tilings No gaps or overlaps Kepler ( ) in 1619 : « Harmonices Mundi » Only symmetry compatible with translation : 1, 2, 3, 4, 6 2 3 5 8 1 4 6 Towards Penrose tilling

4 Stacking of 2D lattices preserving symmetry (Ex. square)
In 2D 4 systems (systems) 5 latttice modes Oblic : p Rectangular : p Rectangular : c Square : p Hexagonal : p In 3D Stacking of 2D lattices preserving symmetry (Ex. square) P I

5 Bravais lattices In 3D 7 systems (symmetry) 14 lattice modes P I F C _
Triclinic a  b  c a  b  g 1 b Monoclinic a  b  c a = g = 90°; b 2/m Orthorhombic a  b  c a = b = g = 90° 2/mmm In 3D 7 systems (symmetry) 14 lattice modes Tetragonal a = b  c a = b = g = 90° 4/mmm _ Rhomboedric a = b = c a = b = g 3m Hexagonal a = b  c a=b=90°;g =120° 6/mmm _ Cubic a = b = c a = b = g =90° m3m

6 Crystallographic point groups
32 crystal classes Orthorhombique Monoclinique Triclinique Trigonal Tétragonal Hexagonal Cubique Crystallographic point groups 1 2 3 4 6 222 32 422 622 7 crystal systems Holohedral : with the lattice symmetry Ex : Tétragonal (4/mmm) ... hemihedral, tetarto-hedral Chiral groups (Direct sym) Centrosym groups (Laue class) Improper groups (ind sym.– inv) _ _ _ _ _ 1 2=m 3 4 6=3/m 2/m 4/m 6/m 2mm 3m 4mm 6mm _ _ _ _ _ 3m 42m (4m2) 62m (6m2) mmm 4/ mmm 6/ mmm 23 432 _ _ _ m3 43m m3m

7 Maille de Wigner-Seitz
Ensemble des points plus proches de l’origine que de n’importe quel autre point Maille primitive, ayant la symétrie ponctuelle du réseau Dans l’espace réciproque : Zone de Brillouin Maille de W-S Maille conventionnelle

8 Relations between the 7 systems
Hexagonal Cubic Tetragonal Group/subgroup Symmetry breaking Phase transitions Trigonal Orthorhombic Monoclinic 4 2 L L Triclinic L L+e L L-e L 6 L 3

9 Mauritz Cornelis Escher
Space groups Mauritz Cornelis Escher Dutch graphic artist ( ) . Groupe P4 (chiral)

10 New symmetries Groupe P4gm Glide planes Reflections Glide planes

11 O : Rotation, Reflection
New symmetry Glide plane (M,t) After two reflections M, periodicity T t=T/2 Combination (O, t) O : Rotation, Reflection T : translation T T/2 M Notation : a, b, c, n, d, g Screw axis (AN, t) After N translations t periodicity: mc t = mc/N 21 41 42 61 64 Notation : Nm (AN, mc/N)

12 Symmetry operations Rotations Roto-reflections Screw axis Reflection
Glide plane

13 Directions (primary, etc.)
Space groups 230 space groups 7 crystalline systems Notations Directions (primary, etc.) Lattice mode Generators Point Group Without translation I41/amd Tetragonal Body centered 4 m

14 Asymmetric unit

15 Symmetry _ _ _ _ Linear Symmetry Point groups Symmetry of position
Rotations Roto-reflections Conventionnally Rotations (An) Reflections (M) Inversion (C) Roto-inversions (An) Point groups 7 Curie Symmetry of position Translations T= u a + v b + w c Symmetry allowed 1, 2, 3, 4, 6 ( 3, 4, 6) M, C 14 Bravais lattices 32 Crystal classes 7 crystal systems Translations Rotations Roto-reflections + Screw axis Glide plane 230 Space group ( 7 systems ) _ _ _ _


Download ppt "Symmetry of position: periodic order"

Similar presentations


Ads by Google