Presentation is loading. Please wait.

Presentation is loading. Please wait.

Noisy Sparse Subspace Clustering with dimension reduction

Similar presentations


Presentation on theme: "Noisy Sparse Subspace Clustering with dimension reduction"β€” Presentation transcript:

1 Noisy Sparse Subspace Clustering with dimension reduction
Yining Wang, Yu-Xiang Wang, Aarti Singh Machine Learning Department Carnegie mellon university

2 Subspace Clustering

3 Subspace Clustering Applications
Motion Trajectories tracking1 1 (Elhamifar and Vidal, 2013), (Tomasi and Kanade, 1992)

4 Subspace Clustering Applications
Face Clustering1 Network hop counts, movie ratings, social graphs, … 1 (Elhamifar and Vidal, 2013), (Basri and Jacobs, 2003)

5 Sparse Subspace Clustering
(Elhamifar and Vidal, 2013), (Wang and Xu, 2013). Data: 𝑋= π‘₯ 1 , π‘₯ 2 β‹―, π‘₯ 𝑁 βŠ† 𝑅 𝑑 Key idea: similarity graph based on l1 self-regression π‘₯ 1 No False Connections π‘₯ 2 π‘₯ 3 π‘₯ 𝑁 π‘₯ 1 π‘₯ 2 π‘₯ 3 π‘₯ 𝑁

6 Sparse Subspace Clustering
(Elhamifar and Vidal, 2013), (Wang and Xu, 2013). Data: 𝑋= π‘₯ 1 , π‘₯ 2 ,β‹―, π‘₯ 𝑁 βŠ† 𝑅 𝑑 Key idea: similarity graph based on l1 self-regression 𝑐 𝑖 = argmin 𝑐 𝑖 𝑐 𝑖 1 s.t. π‘₯ 𝑖 = 𝑗≠𝑖 𝑐 𝑖𝑗 π‘₯ 𝑗 Noiseless data 𝑐 𝑖 = argmin 𝑐 𝑖 π‘₯ 𝑖 βˆ’ 𝑗≠𝑖 𝑐 𝑖𝑗 π‘₯ 𝑗 +πœ† 𝑐 𝑖 1 Noisy data

7 SSC with dimension reduction
Real-world data are usually high-dimensional Hopkins-155: 𝑑=112~240 Extended Yale Face-B: 𝑑β‰₯1000 Computational concerns Data availability: values of some features might be missing Privacy concerns: releasing the raw data might cause privacy breaches.

8 SSC with dimension reduction
Dimensionality reduction: 𝑋 =Ψ𝑋, Ψ∈ 𝑅 𝑝×𝑑 , 𝑝β‰ͺ𝑑 How small can p be? A trivial result: 𝑝=Ξ©(πΏπ‘Ÿ) is OK. L: the number of subspaces (clusters) r: the intrinsic dimension of each subspace Can we do better?

9 Main Result Pr βˆ€π’™βˆˆπ‘Ί, Ξ¨π‘₯ 2 2 ∈ 1Β±πœ– π‘₯ 2 2 β‰₯1βˆ’π›Ώ
𝑝=Ξ© πΏπ‘Ÿ βŸΉπ‘=Ξ©(π‘Ÿ log 𝑁 ),if Ξ¨ is a subspace embedding Random Gaussian projection Fast Johnson-Lindenstrauss Transform (FJLT) Uniform row subsampling under incoherence conditions Sketching …… Lasso SSC should be used even if data are noiseless.

10 Proof sketch Review of deterministic success conditions for SSC (Soltanolkotabi and Candes, 12)(Elhamifar and Vidal, 13) Subspace incoherence Inradius Analyze perturbation under dimension reduction Main results for noiseless and noisy cases.

11 Review of SSC success condition
Subspace incoherence Characterizing inter-subspace separation πœ‡ β„“ ≔ max π‘₯βˆˆπ‘‹\ X (β„“) max 𝑖 normalize 𝑣 π‘₯ 𝑖 β„“ , π‘₯ where 𝑣(π‘₯) solves max 𝑣 𝑣, π‘₯ βˆ’ πœ† 2 𝑣 2 2 𝑠.𝑑 𝑋 𝑇 𝑣 ∞ ≀1 Lasso SSC formulation Dual problem of Lasso SSC

12 Review of SSC success condition
Inradius Characterzing inner-subspace data point distribution Large inradius 𝜌 Small inradius 𝜌

13 Review of SSC success condition
(Soltanolkotabi & Candes, 2012) Noiseless SSC succeeds (similarity graph has no false connection) if 𝝁<𝝆 With dimensionality reduction: πœ‡β†’ πœ‡ , πœŒβ†’ 𝜌 Bound πβˆ’ 𝝁 , π†βˆ’ 𝝆

14 Perturbation of subspace incoherence πœ‡
𝜈= argmax 𝜈: 𝑋 𝑇 𝜈 ∞ ≀1 𝜈,π‘₯ βˆ’ πœ† 2 𝜈 2 2 𝜈 = argmax 𝜈: 𝑋 𝑇 𝜈 ∞ ≀1 𝜈, π‘₯ βˆ’ πœ† 2 𝜈 2 2 We know that 𝜈,π‘₯ β‰ˆ 𝜈, π‘₯ … So πœˆβ‰ˆ 𝜈 because of strong convexity

15 Perturbation of inradius 𝜌
Main idea: linear operator transforms a ball to an ellipsoid

16 Main result SSC with dimensionality reduction succeeds (similarity graph has no false connection) if 𝝁+ πŸ‘πŸ 𝝐/𝝀 +πŸ‘π <𝝆 Noisy case: (πœ‚ is the adversarial noise level) πœ‡ πœ‚ 2 𝜌 β„“ + 8(πœ–+3πœ‚) πœ† +3πœ–<𝜌 Takeaways: the geometric gap Ξ”=πœŒβˆ’πœ‡ is a resource that can be traded-off for data dimension reduction Regularization parameter of Lasso Error of approximate isometry Lasso SSC required even for noiseless problem O(1) if 𝑝=Ξ©(π‘Ÿ log 𝑁 )

17 Simulation results (Hopkins 155)

18 Conclusion SSC provably succeeds with dimensionality reduction Dimension after reduction 𝑝 can be as small as Ξ©(π‘Ÿ log 𝑁 ) Lasso SSC is required for provable results. Questions?

19 References M. Soltanolkotabi and E. Candes. A Geometric Analysis of Subspace Clustering with Outliers. Annals of Statistics, 2012. E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. IEEE TPAMI, 2013 C. Tomasi and T. Kanade. Shape and Motion from Image Streams under Orthography. IJCV, 1992. R. Basri and D. Jacobs. Lambertian Reflection and Linear Subspaces. IEEE TPAMI, 2003. Y.-X., Wang and H., Xu. Noisy Sparse Subspace Clustering. ICML, 2013.


Download ppt "Noisy Sparse Subspace Clustering with dimension reduction"

Similar presentations


Ads by Google