Presentation is loading. Please wait.

Presentation is loading. Please wait.

I. The Nature of Light A. The Sun is the source of energy on Earth. 1. The light you see is white light. 2. Light passing through a prism appears: red,

Similar presentations


Presentation on theme: "I. The Nature of Light A. The Sun is the source of energy on Earth. 1. The light you see is white light. 2. Light passing through a prism appears: red,"— Presentation transcript:

1 I. The Nature of Light A. The Sun is the source of energy on Earth. 1. The light you see is white light. 2. Light passing through a prism appears: red, orange, yellow, green, blue and violet as the visible spectrum.

2 B. When Light Strikes Objects 1. Transmission is when transparent materials allow light to pass through. 2. When light hits a shiny surface and light bounces back it’s called reflection. 3. Absorption is when dark objects take in light. 4. Most objects reflect some colors of the visible light spectrum while they absorb other colors.

3 Reflect, Absorb, Transmit

4 D. Plant Pigments 1. When light strikes a leaf, it is absorbed by the pigments found in the leaf’s cells. 2. Chlorophyll is the most abundant pigment in leaves. 3. Chlorophyll absorbs blue and red light and reflects green light. 4. Accessory pigments are also found in plants include orange and yellow pigments. 5. Most accessory pigments are hidden by the chlorophyll.

5 Cell Energy (Photosynthesis and Respiration) Notes Energy: Energy for living things comes from food. Originally, the energy in food comes from the sun.

6 Organisms that use light energy from the sun to produce food—autotrophs (auto = self) Ex: plants and some microorganisms (some bacteria and protists)

7 Organisms that CANNOT use the sun’s energy to make food—heterotrophs Ex: animals and most microorganisms

8 AdenineRibose 3 Phosphate groups Cell Energy: Cells usable source of energy is called ATP ATP stands for adenosine triphosphate

9 ADP stands for adenosine diphosphate AdenineRibose2 Phosphate groups

10 All energy is stored in the bonds of compounds— breaking the bond releases the energy When the cell has energy available it can store this energy by adding a phosphate group to ADP, producing ATP

11 ATP is converted into ADP by breaking the bond between the second and third phosphate groups and releasing energy for cellular processes.

12 Photosynthesis: Photosynthesis is the process by which the energy of sunlight is converted into the energy of glucose

13 Photosynthesis occurs in the chloroplasts of plants

14 Light absorbing compound is a pigment—pigments absorb some wavelengths of light and reflect others— the color our eyes see is the color that the pigment reflects

15 Chlorophyll is the pigment inside the chloroplast the absorbs light for photosynthesis As the chlorophyll in leaves decays in the autumn, the green color fades and is replaced by the oranges and reds of carotenoids.

16 General formula for photosynthesis : carbon dioxide + water + light glucose + oxygen 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2

17 Diagram Reactants Products Light H2OH2OCO 2 O2O2 C 6 H 12 O 6 Glucose Chloroplast Light Dependent Reaction Calvin Cycle NADP+ ADP + P ATP NADPH

18 Summary: Light Dependent Reaction—H 2 O is broken down and light energy is stored temporarily in inorganic energy carriers, ATP and NADPH Calvin Cycle—energy is transferred from ATP and NADPH to the organic compound glucose

19 Cellular Respiration: (2 kinds—Aerobic and Anaerobic) Cellular respiration is the process by which the energy of glucose is released in the cell to be used for life processes (movement, breathing, blood circulation, etc…)

20 Cells require a constant source of energy for life processes but keep only a small amount of ATP on hand. Cells can regenerate ATP as needed by using the energy stored in foods like glucose. The energy stored in glucose by photosynthesis is released by cellular respiration and repackaged into the energy of ATP.

21

22 Respiration occurs in ALL cells and can take place either with or without oxygen present.

23 Aerobic Respiration: requires oxygen Occurs in the mitochondria of the cell Total of 36 ATP molecules produced General formula for aerobic respiration: C 6 H 12 O 6 + 6O 2 6 CO 2 + 6H 2 O + 36 ATP glucose + oxygen carbon dioxide + water + energy Human cells contain a specialized structure – the mitochondrion – that generates energy.

24 Diagram Glucose Glycolysis Electron Transport Chain 2 Krebs Cycle Mitochondria In Cytoplasm 232 Electrons carried in NADH Electrons carried in NADH and FADH 2

25 Summary: 3 steps: 1 st glycolysis 2 nd Krebs cycle 3 rd Electron Transport Chain (ETC)

26 Anaerobic Respiration: occurs when no oxygen is available to the cell (2 kinds: Alcoholic and Lactic Acid) Also called fermentation Much less ATP produced than in aerobic respiration

27 Alcoholic fermentation—occurs in bacteria and yeast Process used in the baking and brewing industry—yeast produces CO 2 gas during fermentation to make dough rise and give bread its holes glucose ethyl alcohol + carbon dioxide + 2 ATP

28 Lactic acid fermentation—occurs in muscle cells Lactic acid is produced in the muscles during rapid exercise when the body cannot supply enough oxygen to the tissues—causes burning sensation in muscles glucose lactic acid + carbon dioxide + 2 ATP

29 glycolysis Anaerobic Respiration Alcoholic fermentation Bacteria, Yeast 2 ATP Lactic acid fermentation Muscle cells 2 ATP Aerobic Respiration 36 ATP ETC Mitochondria Krebs Cycle Cytoplasm First step in anaerobic respiration is also glycolysis Diagram C 6 H 12 O 6 glucose


Download ppt "I. The Nature of Light A. The Sun is the source of energy on Earth. 1. The light you see is white light. 2. Light passing through a prism appears: red,"

Similar presentations


Ads by Google