Download presentation
Presentation is loading. Please wait.
1
I II X X Statements Reasons 1. π΄π΅ β
π΄πΆ 1. Given 2. π
π΅ β
π
πΆ 2. Given
1. π΄π΅ β
π΄πΆ 1. Given II 2. π
π΅ β
π
πΆ 2. Given X X 3. π΄π
β
π΄π
3. β‘πππ½β
β‘πππΎ 3. Reflexive Postulate 4. βπ΄π΅π
β
βπ΄πΆπ
4. πππβ
πππ 5. Corresponding parts of congruent triangles are congruent 5. β‘π΄π
π΅β
β‘π΄π
πΆ 6. Angles on a line 6. β‘π΅π
π πππ β‘π΄π
π΅ are supplements β‘πΆπ
π πππ β‘π΄π
πΆ are supplements 7. β‘πβ
β‘π 7. Complements of congruent angles are congruent 7. β‘π΅π
πβ
β‘πΆπ
π 8. π
π β
π
π 8. Reflexive Postulate 9. βπ
π΅πβ
βπ
πΆπ 9. ππ΄πβ
ππ΄π 10. Corresponding parts of congruent triangles are congruent ππ΅ β
ππΆ
2
I II Statements Reasons 1. π±π² β
π±π³ 1. Given 2. π±πΏ β
π±π 2. Given I
1. π±π² β
π±π³ 1. Given 2. π±πΏ β
π±π 2. Given I 3. β‘π²β
β‘π³ 3. In a triangle (KJL) angles opposite congruent sides are congruent 4. β‘π±πΏπβ
β‘π±ππΏ 4. In a triangle (JXY) angles opposite congruent sides are congruent 6. Angles on a line 6. β‘π±πΏπ πππ
β‘π±πΏπ² are supplements β‘π±ππΏ πππ
β‘π±ππ³ are supplements 7. β‘π±πΏπ²β
β‘π±ππ³ 7. Complements of congruent angles are congruent 8. βπ±π²πΏβ
βπ±π³π 8. π¨π¨πΊβ
π¨π¨πΊ 9. π²πΏ β
π³π 9. Corresponding parts of congruent triangles are congruent
3
Lesson 8 - Properties of Parallelograms
Unit 3 Lesson 8 - Properties of Parallelograms
4
No, not based on the immediate evidence.
Is π΄π congruent to π½π ? No, not based on the immediate evidence. What relationship does π΄π have to π½π ? π΄π β₯ π½π Is β‘π congruent to β‘J, why? Yes, they are alternate interior angles. βπ΄πΊπβ
βπππ½ Sπ΄π΄β
ππ΄π΄ π½π
5
- a quadrilateral with both pairs of opposite sides parallel quad
Prior knowledge: - prefix meaning four *** four-sided figure - meaning side - a quadrilateral with both pairs of opposite sides parallel quad lateral
6
Note: A and C can be the obtuse angles or the acute angles
1 2 4 3 A B C D π΄π΅πΆπ· ππ π πππππππππππππ X Opposite sides and opposite angles are congruent Statements Reasons 1. π΄π΅πΆπ· ππ π πππππππππππππ 1. Given D 2. π΄π΅ β₯ π·πΆ and π΄π· β₯ π΅πΆ 2. Opposite sides of a parallelogram are parallel 3. β‘1 β
β‘2 and β‘3 β
β‘4 3. When parallel lines are cut by a transversal the alternate interior angles are congruent 4. π·π΅ β
π·π΅ 4. Reflexive postulate 5. βπ΄π΅π·β
βπΆπ·π΅ 5. π΄ππ΄β
π΄ππ΄ 6. CPCTC 6. π΄π· β
πΆπ΅ and π΄π΅ β
πΆπ· 7. β‘π΄ β
β‘C 7. CPCTC Therefore, in a parallelogram the opposite sides and opposite angles are congruent
7
l V π΄π΅πΆπ· ππ π πππππππππππππ The diagonals bisect each other Statements
Reasons 1. ABCD is a parallelogram 1. Given 2. AB β₯ DC 2. Opposite sides of a parallelogram are parallel 3. β‘1 β
β‘2 and β‘3 β
β‘4 3. When parallel lines are cut by a transversal the alternate interior angles are congruent 4. AB β
DC 4. Opposite sides of a parallelogram are congruent 5. βABEβ
βCDE 5. ASAβ
ASA 6. CPCTC 6. BE β
DE and AE β
CE 7. A bisector divides a segment into two congruent segments 7. The diagonals bisect each other
8
II I X Statements Reasons
Quadrilateral ABCD, with opposite sides congruent X π¨π©πͺπ« ππ π πππππππππππππ I Statements Reasons 1. Quadrilateral ABCD, with opposite sides congruent 1. Given 2. π«π© β
π«π© 2. Reflexive postulate 3. βπ¨π©π«β
βπͺπ«π© 3. πΊπΊπΊβ
πΊπΊπΊ 4. β‘π β
β‘2 and β‘π β
β‘4 4. CPCTC 5. When two lines are cut by a transversal, making the alternate interior angles are congruent, the lines are parallel. 5. π¨π© β₯ π«πͺ and π¨π« β₯ π©πͺ 6. π¨π©πͺπ« ππ π πππππππππππππ 6. A quadrilateral with two pairs of opposite sides parallel is a parallelogram
9
Homework β Page 38
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.