Download presentation
Presentation is loading. Please wait.
Published byJeffery Pitts Modified over 9 years ago
1
1 CS 151: Digital Design Chapter 3: Combinational Logic Design 3-1Design Procedure CS 151: Digital Design
2
CS 151 2 Overview Part 1 – Design Procedure Steps Specification Formulation Optimization Technology Mapping Beginning Hierarchical Design Technology Mapping - AND, OR, and NOT to NAND or NOR Verification Manual Simulation
3
CS 151 3 Overview (continued) Part 2 – Combinational Logic Functions and functional blocks Rudimentary logic functions Decoding using Decoders Implementing Combinational Functions with Decoders Encoding using Encoders Selecting using Multiplexers Implementing Combinational Functions with Multiplexers
4
CS 151 4 Design Procedure 1. Specification Write a specification for the circuit if one is not already available Determine and name inputs Determine and name outputs 2. Formulation (Truth table) Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification 3. Optimization Simplify the resulting Boolean functions for each output 4. Draw Logic Diagram 5. Technology Mapping Transform the logic diagram to a new diagram using the available implementation technology. 6. Verification Verify the correctness of the design Sections 3-4 and 3-6
5
CS 151 5 Example-1 Design a combinational circuit with 3 inputs and 1 output. The output must be logic 1 when the binary value of the inputs is less than 011(3) and logic 0 otherwise. Use only NAND Gates.
6
CS 151 6 Example-1 (Cont) 3. Boolean Function for each output F = ? 4. Logic Diagram and Technology Mapping 1. Specification: 3 inputs : X, Y and Z 1 output: F 2. (Formulation) Truth Table 3 inputs 2 3 rows
7
CS 151 7 Example-2 Design a BCD to Excess-3 code converter Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011) added to each BCD code word
8
CS 151 8 BCD-to-Excess-3 Code Converter BCD codeExcess-3 code 00000000 11001100 11101110 01010101 Example-2 (Cont.) In multiple output circuits, each output must be expressed separately as a function of all the input variables
9
CS 151 9 1. Specification: 4 Inputs: A, B, C and D 4 Outputs: W,X, Y and Z Don’t cares: BCD 1010 to 1111 2. Formulation (Truth Table) 4 inputs 2 4 rows BCD only needs 10 rows Design of a BCD-to-Excess-3 Code Converter Example-2 (Cont.) W= (5,6,7,8,9) X= (1,2,3,4,9) Y= (0,3,4,7,8) Z= (0,2,4,6,8)
10
CS 151 10 3. Optimization Boolean function for each output using K-maps B C D A 0132 4576 12131514 891110 1 11 1 XXX XX X 1 B C D A 0132 4576 12131514 891110 11 1 1 XXX XX X 1 B C D A 0132 4576 12131514 891110 11 1 XXX XX X 1 1 w y x Example-2 (Cont.) W= (5,6,7,8,9) X= (1,2,3,4,9) Y= (0,3,4,7,8) Z= (0,2,4,6,8) B C D A 0132 4576 12131514 891110 1 11 1 XXX XX X 1 z W= A + BC + BD = A + B(C+D) X = B’C + B’D + BC’D’ = B`(C+D) + BC`D` Y = CD + C’D’ Z = D’
11
CS 151 11 Example-2 (Cont.) 4. Draw the logic diagram W= A + B(C+D) X = B`(C+D) + BC`D` Y = CD + C’D’ Z = D’
12
CS 151 12 Design a BCD-to-Seven-Segment Decoder A BCD-to-seven-segment-decoder is a combinational circuit that accepts a decimal digit in BCD and generates the appropriate output for the selection of segments that display the decimal digit. Each digit is formed from 7 segments, each consisting of 1 LED that can be illuminated by digital signals. Example 3
13
CS 151 13 BCD code 11111111111111 BCD-to-7-Segment Decoder 00010001 Example 3 (Cont.) 1.Specification: 4 Inputs (BCD bits): A, B, C and D 7 Outputs (display segments): a, b, c, d, e, f and g Don’t cares: BCD 1010 to 1111 g f e d c b a A B C D
14
CS 151 14 2. Formulation (Truth table) : 2. Formulation (Truth table) To display the input BCD digit : Which segment(s) should illuminate (be turned on)? Which segment(s) should not illuminate (be turned off)? a b c d e f g Example 3 (Cont.)
15
CS 151 15 3. Optimization: 3. Optimization: Boolean Function for each output a=? b=? c=? d=? e=? f=? g=? 4. Draw the logic diagram Example 3 (Cont.)
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.