Download presentation
Presentation is loading. Please wait.
Published byBrendan King Modified over 9 years ago
1
ONIOM approach to complex and large molecular systems
Modellistica Molecolare (5 CFU) July 7-11, Torino, Italy Piero Ugliengo Dip. Chimica IFM - Via P. Giuria 7 University of Torino Modellistica Molecolare 2003
2
QM methods vs system size
Hartree-Fock: HF 673 atoms 4000 BF Møller-Plesset: MP2, MP3, MP4 CI and CC: CI-SD, CCSD, CCSD(T) Modellistica Molecolare 2003
3
QM methods: relative performance
B3-LYP is close to HF and scales much better than post-SCF as a function of basis sets size Modellistica Molecolare 2003
4
Modeling at different scales
Ab-initio & semiempirical Molecular mechanics dynamics Infinite system ?? Modellistica Molecolare 2003
5
Method of the isolated cluster
N° atoms grows fast with cluster size Large number of terminal H atoms Hard to enforce crystal memory into the cluster structure ONIOM or QM/MM type techniques quite effective Any kind of QM method can be used (MP2, CCSD, DFT) Modellistica Molecolare 2003
6
Periodic treatment for crystals
Born Von-Karmàn rule: Bloch theorem: , g = l a1 + m a2 + n a3 crystalline orbitals g a2 unit cell a1 a3 Modellistica Molecolare 2003
7
One possible strategy: the ONIOM method
The recipy is to divide the molecular system in two levels which are then joined together via fictitious atoms (H atoms) inserted at a given point along pre-existent bonds: Real level, inclusive of all atoms of the adopted cluster treated with the lowest computational level. Model level, inclusive of atoms treated at the highest computational level plus link atoms (HL). The memory of the Real level is enforced by the HL positions and forces F. Maseras and K. Morokuma J. Comput. Chem. 16 (1995) 1170 Modellistica Molecolare 2003
8
The ONIOM machinery ETOT(High:Low) = E(High, Model) + E; E = E(Low, Real) - E(Low, Model) If Model Real, E 0, ETOT(High:Low) = E(High, Real) If Low High ETOT(High: High) = E(High, Real) All others QM quantities are defined following the same scheme. The link between (High,Model) and (Low,Model) systems is via forces on the common HL atoms. Modellistica Molecolare 2003
9
Mechanical embedding ONIOM method
Link atoms (H, F,…) Model cluster Real system Two QM methods: high level for the model cluster low level for the real system The two zones are disconnected. Link atoms enforce the structural memory of the real system to the model cluster. Charge transfer occurs only at low level for the real system Modellistica Molecolare 2003
10
ONIOM energy definition
E(Low level:Real) + E(High level:Model) – E(Low level:Model) = E(High:Low) Low level: Molecular mechanics, semiempirical, HF, DFT High level: HF, MP2, CCSDT IMPORTANT!: Extension to periodic system: QMPot (J. Sauer & M. Sierka) Modellistica Molecolare 2003
11
Modeling at different scales: ONIOM method
Real Model QM High QM Low Sem QM QM MM Modellistica Molecolare 2003
12
ONIOM applications Bronsted site in HY faujasite O C Mg
NH3 adsorbtion on hydroxylated silica surfaces (CPL 341 (2001) 625) Bronsted site in HY faujasite O C Mg O CO adsorbtion on MgO(001) surface (CPL 366 (2002) 683) Modellistica Molecolare 2003
13
Surface features of silica based materials
amorphous silica surface SiO4 isolated interacting vicinal geminal Si O H External surface of MFI H O Modellistica Molecolare 2003
14
Experimental evidence of a surface H-bonded complex
Si OH stretching frequency shift: Dn(OH) = -650 cm-1 (T = 298K) Dn(OH) = -950 cm-1 (T = 4K) free OH Infrared spectroscopy Heat of adsorption: isosteric: -37 kJ/mol microcalorimetric: -45 kJ/mol Microcalorimetry Modellistica Molecolare 2003
15
Adopted models and strategies
Si O H N O H Si C/NH3 High: B3LYP/DZP C Low: MNDO PM3 AM1 HF/STO-3G HF/3-21G + Cm/NH3 Cb/NH3 Cs/NH3 Modellistica Molecolare 2003
16
How to compute physical quantities
Modellistica Molecolare 2003
17
Structural and energetic data
Intermolecular N...H distance (Å) and binding energies (BE) (kJ/mol) for the cluster models in interaction with NH3 Modellistica Molecolare 2003
18
OH vibrational frequency
Harmonic OH frequency wh (cm-1) for the free models Modellistica Molecolare 2003
19
OH vibrational frequency shift
Harmonic OH frequency red shift, Dwh= wh(Cx)-wh(Cx /NH3) (cm-1) for the cluster models in interaction with NH3 Modellistica Molecolare 2003
20
Modellistica Molecolare 2003
NMR 1H and 29Si data Chemical shifts d(1H) and [-d(29Si)] (ppm) for the free models. Data relative to B3LYP/DZP shield constants for tetrametilsilane: d(1H)=31.7-s(1H), d(29Si)=403.3-s(29Si) Modellistica Molecolare 2003
21
Energetic & vibrational internal correlation
Modellistica Molecolare 2003
22
Chemically active sites in zeolites
Powerful solid acid catalyst Modellistica Molecolare 2003
23
Acidic sites in Faujasite: an overview
2 3 1 4 H--O hexagonal prism 145 atoms in the UC Supercage P1 space group Four protonation sites Relative stability OH frequencies 1dH of acidic protons b-cage Modellistica Molecolare 2003
24
Acidic sites in Faujasite: local structure
H O2H O Al O1H O3H O4H Only O1H and O4H point into the supercage Modellistica Molecolare 2003
25
Neutron diffraction H-Y (Si/Al=3)
Experimental results on HY IR H-Y (Si/Al=5) 15 K Spoto et al. unpublished NMR H-Y (Si/Al=5) Janchen et al. Catal. Lett (1996) 147 O3H 3544 O1H 3647 O1H 4.7 O3H 4.1 2 4 6 ppm Neutron diffraction H-Y (Si/Al=3) Czjzek et al. J. Phys. Chem (1992) 1535 O1H O2H O3H O4H Modellistica Molecolare 2003
26
Stoichiometry of the ONIOM model regions
b1 Si12AlO21 Si13AlO22 Si13AlO22 b3 b2 Si16AlO27 Si13AlO23 b5 b4 Si24AlO37 Si21AlO31 Modellistica Molecolare 2003
27
ONIOM clusters at (B3-LYP/SVP:AM1)
Modellistica Molecolare 2003
28
ONIOM(B3LYP/SVP:AM1) OH stabilities
4 1 3 2 kJ/mol Relative stabilities with respect to O1H Modellistica Molecolare 2003
29
OH numerical harmonic frequencies
b2 w(OH)/cm O1H O2H O3H O4H D(3-1) ONIOM(B3-LYP/SVP:AM1) s b Modellistica Molecolare 2003
30
OH harmonic frequencies: a comparison
w(OH) / cm O1H O2H O3H O4H D(3-1) Measured Harmonic Experiment B3-LYP/SVP:AM1 s B3-LYP/SVP:AM1 b Cluster calculation CRYSTAL B3/GB DMOL LDA QMpot B3-LYP Periodic calculation Modellistica Molecolare 2003
31
Modellistica Molecolare 2003
1dH chemical shifts 1dH / ppm O1H O3H D(3-1) 1dH = s (H-TMS) - s (OXH) Experiment / / / 0.7 B3-LYP/SVP:AM1 s B3-LYP/SVP:AM1 b Cluster calculation Modellistica Molecolare 2003
32
Periodic hamiltonians
At the moment HF, LDA, GGA and hybrid functionals (only in CRYSTAL) have been coded in periodic QM codes. DFT greatly improves HF results, pushing the accuracy close to chemical requests. A serious drawback of all proposed functionals is that dispersion forces are not taken into account. J.M. Perez-Jorda and A.D. Becke Chem. Phys. Lett. 229 (1995) 134. S. Kristyan and P. Pulay Chem. Phys. Lett. 229 (1994) 175. Q. Wu and W. Yang, J. Chem. Phys. 116 (2002) 515.) Modellistica Molecolare 2003
33
Dispersive forces in materials modeling
Physisorption Molecular crystals Dispersion forces play a major rôle in the determination of large molecular structures. This is particulary true for crystal structures Confinement Modellistica Molecolare 2003
34
Modellistica Molecolare 2003
MgO(001)/CO system Modellistica Molecolare 2003
35
Computational methods
Periodic HF and B3-LYP calculations using CRYSTAL98 Basis A: 8-511G (Mg); 8-411G(O) G(d)(CO) Basis B: TZV(p,d) (MgO). VTZ(2d) (CO) CO and Mg---C fully optimized Harmonic CO frequency shift A. Damin, R. Dovesi, A. Zecchina and P. Ugliengo Surf. Science 479 (2001) 255 Modellistica Molecolare 2003
36
Binding energies of MgO(001)/CO
All data in kJ/mol Electron correlation improves the HF BE BSSE is very large and almost cancels the BE Modellistica Molecolare 2003
37
ONIOM method for MgO(001)/CO
Real system: periodic slab Low level: B3LYP/B Model system: Mg9O9 High level: B3LYP/aug-cc-pVXZ (X=D,T,Q) MP2/aug-cc-pVXZ (X=D,T,Q) Mg2+ C O O2- CO Mg2+ O2- ONIOM (B3LYP/aug-cc-pVXZ:B3LYP/B) ONIOM (MP2/aug-cc-pVXZ:B3LYP/B) Modellistica Molecolare 2003
38
ONIOM definition of BE BE [High:Low] = BE (Mg9O9/CO) - BE (Mg9O9/CO) + BE (Slab/CO) The use of the correlation consisten basis set allows for a complete basis set extrapolation of the binding energy Modellistica Molecolare 2003
39
= BEC [MP2/Q:B3LYP/B] - BEC [B3LYP/Q:B3LYP/B]
Complete basis set extrapolation of BEs = BEC [MP2/Q:B3LYP/B] - BEC [B3LYP/Q:B3LYP/B] =7.5 kJ/mol dispersive contribution to the BE plus the intrasystem correlation difference of CO and Mg9O9 at MP2 and B3-LYP respectively BEC() = a + b / n3 n=4 n=3 exchange repulsion charge transfer electrostatic+polarization dispersion n=2 Modellistica Molecolare 2003
40
Classical electrostatic binding energy
Using the ONIOM field and the CO multipoles and polarizability the classical BE can be worked out as: BE = - mzF + 1/2 zzF + 1/6 zzz2F - 1/21 zzzz3F - 1/2 azzF2 intrasystem correlation difference between MP2 and B3-LYP is 1 kJ/mol the best extrapolated ONIOM MP2 binding energy of 12.7 kJ/mol is in very good agreement with the experimental values around 13 kJ/mol the final estimate of the dispersion contribution is then 6.6 ± 1 kJ/mol Modellistica Molecolare 2003
41
ONIOM hands on tutorial
Substitutional C and B in bulk silicon Adsorption of NH3 on B-Si surface Adsorption of NH3 on a Lewis site in silica material Modellistica Molecolare 2003
42
Chemical reactions in substitutional processes
Energy of reaction as a function of the adopted model region H Si + C H Si Si H Si B + H ONIOM(AM1:MNDO) H Modellistica Molecolare 2003
43
ONIOM: adopted model regions
Si-4 Si-1 Si-9 Si-13 Modellistica Molecolare 2003
44
ONIOM: definition of reaction energy
ONIOM(AM1:MNDO) B Si + + Si-4 Si-B-4 EB(n) = E(Si-B-n) + E(SiH4) – E(BH3) – E(Si-n) EC(n) = E(Si-B-n) + E(SiH4) – E(CH4) – E(Si-n) E(BH3), E(SiH4), E(CH4) computed at AM1 level Modellistica Molecolare 2003
45
E (n) = E(Si-B-n/NH3)– E(NH3) – E(Si-B-n)
Adsorption of NH3 on a B-Si surface Binding Energy as a function of the adopted model region ONIOM(AM1:MNDO) Si B H E (n) = E(Si-B-n/NH3)– E(NH3) – E(Si-B-n) E(NH3) computed at AM1 level Modellistica Molecolare 2003
46
E (n) = E(Al-n/NH3)– E(NH3) – E(Al-n)
Adsorption of NH3 on a Lewis site model Binding Energy as a function of the adopted model region ONIOM(AM1:MNDO) Al Si N + H O E (n) = E(Al-n/NH3)– E(NH3) – E(Al-n) E(NH3) computed at AM1 level Modellistica Molecolare 2003
47
ONIOM: adopted model regions
Al-1 Al-4 Al-10 Al-24 Modellistica Molecolare 2003
48
Tools and tricks Structure definition and manipulation: MOLDRAW
Export/import XYZ Add H MOLDRAW WebLab viewer Lite Gaussian-98 Modellistica Molecolare 2003
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.