Presentation is loading. Please wait.

Presentation is loading. Please wait.

Antimatter in our Galaxy unveiled by INTEGRAL

Similar presentations


Presentation on theme: "Antimatter in our Galaxy unveiled by INTEGRAL"— Presentation transcript:

1 Antimatter in our Galaxy unveiled by INTEGRAL
Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France

2 Galactic positron annihilation
The pre-INTEGRAL epoch OSSE, TGRS, SMM, … Purcell et al. 1997 Morphology & Flux 3 components : - bulge - disk - PLE Bulge morphology highly uncertain Total flux : (1-3) x 10-3 ph cm-2 s-1 Bulge / Disk flux ratio : Spectroscopy centroid ~ 511 keV Gaussian FWHM ~ keV positronium fraction 0.93 ± 0.04 Kinzer et al. 2001

3 SPI/INTEGRAL image of 511 keV emission
OSSE image (to scale) Knödlseder et al astro-ph/ Iteration 17 of accelerated Richardson-Lucy algorithm 5° x 5° boxcar smoothing Integrated 511 keV flux : 1.4 x 10-3 ph cm-2 s-1

4 511 keV bulge emission morphology
Modelling with a 2d Gaussian l ° ± 0.3° b ° ± 0.3° Dl (FWHM) 8.1° ± 0.9° Db (FWHM) 7.2° ± 0.9° Db / Dl ± 0.14 511 keV flux ± (10-3 ph cm-2 s-1)

5 Galaxy models compatible with SPI data
1.17 x 10-3 ph cm-2 s-1 2.15 x 10-3 ph cm-2 s-1 1.62 x 10-3 ph cm-2 s-1 2.04 x 10-3 ph cm-2 s-1 B/D ratio : 1-3 (flux) / 3-9 (luminosity)

6 Comparison with tracer maps
Old stellar population K+M giants XRBs Young stellar population (free-free, CO, cold dust) Radio µ-waves FIR NIR V X-ray g

7 Galactic bulge spectrum
Model : Gauss + positronium + continuum Energy ± 0.03 keV FWHM ± 0.10 keV Flux 10.0 x 10-4 ph cm-2 s-1

8 Galactic bulge spectrum
Model : 2 Gauss + positronium + cont. Energy ± 0.03 keV FWHM ± 0.40 keV FWHM ± 1.11 keV Flux1 6.9 x 10-4 ph cm-2 s-1 Flux2 3.8 x 10-4 ph cm-2 s-1 Narrow Gauss (FWHM = 1.1 keV) : ~65 % Thermalised positrons Broad Gauss (FWHM = 5.1 keV) : ~35 % Inflight positronium formation (quenched if fully ionised) Consistent with 8000 K ISM with ionisation fraction of ~ Churazov et al. 2005

9 Constraints on the disk source
1809 keV (26Al) 511 keV 44Sc decays via b+ decay (99%) M44 ~ 4 x 10-6 M yr-1 (chem. evol.) Morphology and escape fraction unknown Expected : 8 x 10-4 ph cm-2 s-1 26Al decays via b+ decay (85%) F511 = 0.5 x F1809 (fp = 0.93) Expected : 5 x 10-4 ph cm-2 s-1 Observed disk flux ~ (4-8) x 10-4 ph cm-2 s-1 60% - 100% of the disk flux can be explained by 26Al Rest (if any) is comfortably explained by 44Ti There seems to exist a pure bulge positron source !

10 Constraints on the bulge source
Wolf-Rayet stars Hypernovae / GRB Pulsars Core-collapse SNe Stellar flares CR interactions with ISM Dark matter HMXB SN Ia LMXB Novae

11 Constraints on the bulge source
Wolf-Rayet stars Hypernovae / GRB Pulsars Core-collapse SNe Stellar flares CR interactions with ISM Dark matter HMXB SN Ia LMXB Novae Strong disk component expected

12 Constraints on the bulge source
Wolf-Rayet stars Hypernovae / GRB Pulsars Core-collapse SNe Stellar flares CR interactions with ISM Dark matter HMXB SN Ia LMXB Novae

13 Constraints on the bulge source
Dark matter SN Ia LMXB Novae

14 Low-mass X-ray binaries
Positron production processes g + g  e++ e- (pair jet) N + N’  N*  N + e+ Uncertainties Yield Line shape (broad versus narrow) Observed LMXB B/D ~ 1 Grimm et al. 2002 Liu et al. 2000,2001 B/D too small ? (completeness) Why only LMXB and not HMXB ?

15 Novae B/D probably OK (in particular if only CO novae contribute)
Positron production processes 13N  13C (t = 14 min, 100%) 18F  18O (t = 2.6 hr, 97%) 22Na  22Ne (t = 3.8 yr, 90%) 26Al  26Mg (t = 106 yr, 85%) Yields CO (0.8 M) ONe (1.25 M) 13N 2 x x 10-8 18F 2 x x 10-9 22Na 7 x x 10-9 26Al 2 x x 10-8 Hernanz et al. 2001 Uncertainties B/D ratio (values up to 4 proposed for M31) M31 : 2 types of novae (bulge & disk) bulge : slow-dim, associated with CO disk : fast-bright, associated with ONe Nova rate (20-40 per year) Escape fractions (important for 13N and 18F) B/D probably OK (in particular if only CO novae contribute) 13N : if 100% escape  bulge CO nova rate 25 century-1 required (but models predict that 13N e+ are absorbed in expanding shell)

16 Type Ia supernovae 57Ni : no chance for positrons to escape
Positron production processes 57Ni  57Co (t = 52 hr, 40%) 56Co  56Fe (t = 111 d, 19%) 44Sc  44Ca (t = 5.4 hr (87 yr), 99%) Yields Ch Sub-Ch 57Ni 56Co 44Sc (7-20) x 10-6 (1-4) x 10-3 Woosley 1997; Woosley & Weaver 1994 Uncertainties B/D ratio (poorly known) SN Ia explosion mechanism SN Ia rate ( per century) Escape fraction (important for 57Ni and 56Co) 57Ni : no chance for positrons to escape 56Co : 3% escape would require bulge rate of 0.6 century-1 44Sc : always escape, Sub-Ch would require bulge rate of century-1 (but : overproduces galactic 44Ca abundance & makes bright 44Ti bulge) Different types of SN Ia in bulge (underluminous) and disk (overluminous) ?

17 Dark matter Distribution not well known No flux prediction
Sgr dwarf not detected

18 General conclusions The 511 keV sky is bulge / halo dominated (B/D > 3) Besides bulge / halo and disk, no further 511 keV emission is observed (no PLE) The disk component can be entierly explained by b+ decay of radioactive 26Al and 44Ti The origin of the bulge component is still mysterious (LMXB, Novae, SN Ia, dark matter ?) What is the bulge / halo e+ source ? Has the bulge / halo e+ source a disk component ? Can we learn something about SN Ia / Novae distribution and types ? Observe nearby candidate sources (SNR, LMXB) Deep observations at high galactic latitudes & galactic plane


Download ppt "Antimatter in our Galaxy unveiled by INTEGRAL"

Similar presentations


Ads by Google