Presentation is loading. Please wait.

Presentation is loading. Please wait.

On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica.

Similar presentations


Presentation on theme: "On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica."— Presentation transcript:

1 On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica ‘Rijnhuizen’, Associatie Euratom-FOM Trilateral Euregio Cluster, Postbus 1207, 3430 BE Nieuwegein, The Netherlands * Institute of Space Research of the Russian Academy of Sciences 117810, Moscow, Russia 1 On leave from RRC Kurchatov Institute, Moscow, Russia 26 th EPS Conference on Controlled Fusion and Plasma Physics, 14-18 June 1999, Maastricht, The Netherlands

2 Overview 2D electron magnetohydrodynamics EMHD ideal statistical equilibrium spectra scaling symmetries and spectral laws of decaying turbulence finite density perturbations invariants cascade directions energy partitioning a temporal decay law

3 magnetic field representation: B = B 0 ((1+b) e z +     e z ) generalized vorticity  = b   d e 2   2 b + (1-n eq (x)/n 0 ) generelized flux  =   d e 2   2  evolution equations 2D EMHD with inertial skin depth d e = c/  pe with  = 1 + (  ce /  pe ) 2 [f,g] = e z (  f   g)

4 2D EMHD Finite Density Perturbations finite is the origin of the parameter  = 1 + (  ce /  pe ) 2 divergence of e  momentum balance Poisson’s law.................. and Ampere’s law..............

5 2D EMHD The Invariants Energy.......... generalized Helicity f arbitrary function of  generalized Flux... g arbitrary function of  EbEb EE magnetic kinetic + internal

6 application of equilibrium statistical mechanics requires 1 finite dimensional system 2 Liouville theorem (conservation of phase space volume) achieved by truncated Fourier series representation of fields  ‘detailed’ Liouville theorem for all k x k y invariants of the truncated system: only quadratic ones energy E ; helicity H; mean square flux F Ideal Equilibrium Spectra

7 The Canonical Equilibrium Distribution Equilibrium probability density  = (1/Z) exp(   E   H   F ) Lagrange multipliers    (‘inverse temperatures’)    fixed by E tot H tot F tot and k min k max Equilibrium Spectra E(k x,k y ) = (4  k 2 + 2  (1+d e 2 k 2 )) / D H(k x,k y ) = 2  (1+d e 2 k 2 ) (1+  d e 2 k 2 ) / D F(k x,k y ) = 4  (1+d e 2 k 2 ) / D D = 4  k 2 +  (1+d e 2 k 2 ))   2 (1+d e 2 k 2 ) (1+  d e 2 k 2 ) convergence requires D > 0, and  > 0

8 d e = 0.1 d e = 0.01 squared flux cascade Ideal Equilibrium Spectra Examples of Equilibrium Spectra Energy Flux Helicity  =  = 10,  = 1  =  = 10,  =  1000 energy cascade

9 Ideal Equilibrium Spectra Energy Partitioning Ratio of energies E b and E  : small scales, kd e >> 1, E b / E  =  (1 +  d e 2 /  ) large scales, kd e << 1, E b / E  = (1 +  /  k 2 ) numerical calculations of decaying turbulence E b (k x,k y ) E  (k x,k y ) (1+  d e 2 k 2 )  k 2 +  (1+d e 2 k 2 ))  k 2 (1+d e 2 k 2 ) = E b / E  << 1 initially: fast evolution to near equipartition E b / E  > 1 initially: ratio increases on dissipation time scale

10 Ideal Equilibrium Spectra Energy Partitioning spectra for E b and E  from simulations of decaying turbulence

11 Scale Invariance and Spectra both kd e > 1: 2D EMHD invariant for transformations r’ =  r, t’ =  1  t,  ’ =  1+  ,  ’ =  2+   kd e << 1 : E  b 2 (magnetic) perturbations on scale r : b(r) = r 1+  F with F function of invariant(s)  ’ =  3  +1    =  1/3 thus:  b(r) b(r)   r 4/3 and E(k)   2/3 k  7/3 kd e >> 1 : E  v 2 (kinetic) perturbations on scale r : v(r) = r  F with F function of invariant(s)  ’ =  3  1    = +1/3 thus:  v(r) v(r)   r 2/3 and E(k)   2/3 k  5/3 a la Kolmogorov: only invariant is energy dissipation rate  agrees with Biskamp et al. (1996) (1999)

12 Scale Invariance and Spectra Energy Decay Law integrating over inertial range one obtains dE / dt =  E 3/2 solution numerical results agree data from case d e = 0.3

13 Summary and Conclusions applied equilibrium statistics to ideal 2D EMHD confirm normal energy cascade confirm inverse mean square flux cascade, but kd e < 1 studied energy partitioning evolution to equipartition only for E b < E  initially derived spectral laws from scaling symmetries of 2D EMHD confirm Biskamp et al.: kd e >> 1, E (k)  k  5/3 kd e << 1, E (k)  k  7/3 obtained temporal decay law, confirmed by simulations


Download ppt "On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica."

Similar presentations


Ads by Google