Download presentation

Published byRoss Phelps Modified over 8 years ago

1
**Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz**

Holt Algebra 1 Holt McDougal Algebra 1

2
Objectives Graph a line and write a linear equation using point-slope form. Write a linear equation given two points.

4
**Additional Example 1A: Writing Linear Equations in Point-Slope Form**

Write an equation in point slope form for the line with the given slope that contains the given point. y – y1 = m (x – x1) Write the point-slope form.

5
**Additional Example 1B: Writing Linear Equations in Point-Slope Form**

Write an equation in point slope form for the line with the given slope that contains the given point. slope = –4; (0, 3) y – y1 = m(x – x1) Write the point-slope form. Substitute –4 for m, 0 for x1 and 3 for y1. y – 3 = –4(x – 0) y – 3 = –4(x – 0)

6
**Additional Example 1C: Writing Linear Equations in Point-Slope Form**

Write an equation in point slope form for the line with the given slope that contains the given point. slope = 1; (–1, –4) y – y1 = m(x – x1) Write the point-slope form. Substitute 1 for m, –1 for x1, and –4 for y1. y – (–4) = 1(x – (–1)) Rewrite subtraction of negative numbers as addition. y + 4 = 1(x + 1)

7
Check It Out! Example 1b Write an equation in point slope form for the line with the given slope that contains the given point. slope = 0; (3, –4) y – y1 = m(x – x1) Write the point-slope form. Substitute 0 for m, 3 for x1 and –4 for y1. y – (–4) = 0(x – 3) Rewrite subtraction of negative numbers as addition. y + 4 = 0(x – 3)

8
**Additional Example 2A: Using Point-Slope Form to Graph**

Graph the line described by the equation. y – 1 = 2(x – 3) (2,5) y – 1 = 2(x – 3) is in the form y – y1= m(x – x1). (1,3) The line contains the point (3, 1). Step 1 Plot (3, 1). Step 2 Count 2 units up and 1 unit right and plot another point. Step 3 Draw the line connecting the two points.

9
**Additional Example 2B: Using Point-Slope Form to Graph**

Graph the line described by the equation. (2,7) y – 4 = (x – (–2)) is in the form y – y1= m(x – x1). (-2,4) The line contains the point (–2, 4). slope: m = Step 1 Plot (–2, 4). Step 2 Count 3 units up and 4 units right and plot another point. Step 3 Draw the line connecting the two points.

10
**Additional Example 2C: Using Point-Slope Form to Graph**

Graph the line described by the equation. y + 3 = 0(x – 4) y – (–3) = 0(x – 4) is in the form y – y1= m(x – x1). The line contains the point (4, –3). slope: m = 0 Step 1 Plot (4, –3). Step 2 There slope is 0. Every value of x will be at y = –3. Step 3 Draw the line connecting the points.

11
Check It Out! Example 2a Graph the line described by the equation. y + 2 = –(x – 2) y – (–2) = –1(x − 2) is in the form y – y1 = m(x – x1). The line contains the point (2, –2). Step 1 Plot (2, –2). Step 2 Count 1 unit down and 1 unit right and plot another point. Step 3 Draw the line connecting the points.

12
**Graph the line described by the equation.**

Check It Out! Example 2b Graph the line described by the equation. y + 3 = –2(x – 1) y – (–3) = –2(x − 1) is in the form y – y1= m(x – x1). The line contains the point (1, –3). (0,-1) slope: m = –2 (1,-3) Step 1 Plot (1, –3). Step 2 Count 2 units up and 1 unit left and plot another point. Step 3 Draw the line connecting the points.

13
**Additional Example 3A: Writing Linear Equations in Slope-Intercept Form**

Write the equation that describes each line in slope-intercept form. Slope = 3, (–1, 4) is on the line. Step 1 Write the equation in point-slope form: y – y1 = m(x – x1) y – 4 = 3[x – (–1)] Step 2 Write the equation in slope-intercept form by solving for y. Rewrite subtraction of negative numbers as addition. y – 4 = 3(x + 1) Distribute 3 on the right side. y – 4 = 3x + 3 Add 4 to both sides. y = 3x + 7

14
**Additional Example 3B: Writing Linear Equations in Slope-Intercept Form**

Write the equation that describes the line in slope-intercept form. (2, –3) and (4, 1) Step 1 Find the slope. Step 2 Substitute the slope and one of the points into the point-slope form. y – y1 = m(x – x1) y – (–3) = 2(x – 2) Choose (2, –3).

15
**Additional Example 3B Continued**

Write an equation in slope-intercept form for the line through the two points. (2, –3) and (4, 1) Step 3 Write the equation in slope-intercept form. y + 3 = 2(x – 2) y + 3 = 2x – 4 – –3 y = 2x – 7

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google