Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 1: Stoichiometry Chemistry 2202 1:27 AM.

Similar presentations


Presentation on theme: "Unit 1: Stoichiometry Chemistry 2202 1:27 AM."— Presentation transcript:

1 Unit 1: Stoichiometry Chemistry 2202 1:27 AM

2 Stoichiometry Stoichiometry deals with quantities used in OR produced by a chemical reaction 1:27 AM

3 3 Parts Mole Calculations (Chp. 2 & 3)
Stoichiometry and Chemical Equations (Chp. 4) Solution Stoichiometry (Chp. 6) 1:27 AM

4 PART 1 - Mole Calculations
Isotopes and Atomic Mass (pp ) Avogadro’s number (pp. 47 – 49) Mole Conversions (pp ) M, MV, NA, n, m, v, N 1:27 AM

5 Questions p. 54 #’s 5 – 8 p. 45 #’s 1 – 4 p. 65 #’s 2, 4, 5
1:27 AM

6 PART 1 - Mole Calculations
Percent composition: - given mass (p ) - given the chemical formula (p ) Empirical Formulas (pp ) Molecular Formulas (pp ) Lab: Formula of a Hydrate 1:27 AM

7 Questions p. 103 #’s 23 – 24 p. 82 #’s 1 – 4 p. 86 #’s 1, 3 – 6
1:27 AM

8 Isotopes and Atomic Mass
atomic number - the number of protons in an atom or ion mass number - the sum of the protons and neutrons in an atom isotope - atoms which have the same number of protons and electrons but different numbers of neutrons 1:27 AM

9 Isotopes and Atomic Mass
eg. 1:27 AM

10 Isotopes and Atomic Mass
1:27 AM

11 Isotopes and Atomic Mass
11 % 79 % 10 % not all isotopes are created equal 1:27 AM

12 Isotopes and Atomic Mass
1:27 AM

13 Isotopes and Atomic Mass
atomic mass unit (AMU - p.43) a unit used to describe the mass of individual atoms the symbol for the AMU is u 1 u is 1/12 of the mass of a carbon-12 atom 1:27 AM

14 Isotopes and Atomic Mass
average atomic mass (AAM) the AAM is the weighted average of all the isotopes of an element (p. 45) p. 14 # 5 p. 45 #’s 1 – 4 p. 46 #’s 1 – 6 p. 75 #’s 1:27 AM

15 Finding % Abundance eg. Br has two naturally occurring isotopes. Br-79 has a mass of u and Br-81 has a mass of u. If the AAM of Br is u, determine the percentage abundance of each isotope. 1:27 AM

16 Finding % Abundance Let y = fraction of Br-81 x + y = 1 y = 1 - x
Let x = fraction of Br-79 Let y = fraction of Br-81 x + y = 1 78.92x y = 79.90 y = 1 - x 1:27 AM

17 x + y = 1 78.92x y = 79.90 1:27 AM

18 Avogadro’s Number (p. 47) p. 48 1:27 AM

19 Avogadro’s Number The MOLE is a number used by chemists to count atoms
The MOLE is the number of atoms contained in exactly 12 g of carbon-12. In honor of Amedeo Avogadro, the number of particles in 1 mol has been called Avogadro’s number. 1:27 AM

20 How big is Avogadro's number?
An Avogadro's number of soft drink cans would cover the surface of the earth to a depth of over 200 miles. Avogadro's number of unpopped popcorn kernels spread across the USA, would cover the entire country to a depth of over 9 miles. 1:27 AM

21 How big is Avogadro's number?
If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole. 1:27 AM

22 Avogadro’s Number NA = 6.022 x 1023 particles/mol
1 mole = x 1023 particles 1 mol = x 1023 particles NA = x 1023 particles/mol 1:27 AM

23 Avogadro’s Number 1:27 AM

24 Avogadro’s Number 5 mol 3.011 x 1024 atoms 0.01 mol 6.022 x 1021 atoms
Number of moles Number of atoms 5 mol 3.011 x 1024 atoms 0.01 mol 6.022 x 1021 atoms 7.72 mol 4.65 x 1024 atoms mol 8.01 x 1021 atoms 1:27 AM

25 N = n x NA Avogadro’s Number Formulas: n = # of moles
N = # of particles (atoms, ions, molecules, or formula units) NA = Avogadro’s # 1:27 AM

26 Avogadro’s Number How many moles are contained in the following?
2.56 x Pb atoms 7.19 x CO2 molecules 1:27 AM

27 eg. Calculate the number of moles in 4.98 x 1025 atoms of Al.
Avogadro’s Number eg. Calculate the number of moles in x 1025 atoms of Al. eg. How many formula units of Na2SO4 are in 5.69 mol of Na2SO4? # of Na ions? # of Oxygen atoms? 1:27 AM

28 Avogadro’s Number 1. How many molecules of glucose are in mol of C6H12O6? How many carbon atoms? 2. Calculate the number of moles in a sample of glucose that has 3.56 x 1022 hydrogen atoms. 1:27 AM

29 Avogadro’s Number pp. 51 – 53: #’s 5 – 15 p. 54:  #’s 4 - 8 1:27 AM

30 Molar Mass The mass of one mole of a substance is called the molar mass of the substance eg. 1 mole of Pb has a mass of g 1 mole of Ag has a mass of g 1:27 AM

31 Molar Mass The symbol for molar mass is M and the unit is g/mol eg. MPb = g/mol MAg = g/mol 1:27 AM

32 Molar Mass The molar mass of a compound is the sum of the molar masses of the elements in the compound eg. Calculate the molar mass of: a) H2O b) C6H12O6 c) Ca(OH)2 1:27 AM

33 Molar Mass H2O has 2 hydrogens and 1 oxygen 2 x 1.01 = 2.02
18.02 g/mol 1:27 AM

34 Molar Mass C6H12O6 6 x = 72.06 12 x 1.01 = 12.12 6 x = 96.00 g/mol 1:27 AM

35 Molar Mass Your calculator may not show Ca(OH)2 the zeroes.
There should be 2 digits after the decimal when adding molar masses Ca(OH)2 1 x = 40.08 2 x = 32.00 2 x = 2.02 74.10 g/mol 1:27 AM

36 Molar Mass p. 57: #’s 16 – 19 & Molar Masses Handout
g/mol g/mol g/mol g/mol g/mol g/mol g/mol g/mol g/mol g/mol g/mol 1:27 AM

37 Molar Mass Calculations
Avogadro’s # molar mass N = n x NA m = n x M 1:27 AM

38 Molar Mass Calculations
m = n x M N = n x NA 1:27 AM

39 Molar Mass Calculations
eg. How many moles are in g of NO2? m = 25.3 g MNO2 = g/mol 1:27 AM

40 Molar Mass Calculations
eg. What is the mass of 4.69 mol of water? n = 4.69 mol Mwater = g/mol m = n x M = (4.69 mol)(18.02 g/mol) = g 1:27 AM

41 Molar Mass Calculations
Practice: p #’s p #’s 1:27 AM

42 The Mole #4 answers 1.a) 0.038 mol 2.a) 17.4 g 3.a) 5631 g
b) 3.75 mol b) g b) 3.73 g c) mol c) 528 g c) g d) 23 mol d) g d) g e) mol e) 9328 g e) g 4.a) 1.82 mol c) mol e) mol b) 13 mol d) mol Molar Masses 1.a) b) 12.01 c) 18.02 d) e)245.30 2.a) 6.94 b) 44.01 c) 32.00 d) 78.01 e) 3.a) 63.55 b) c) d) e) 4.a) 6.94 b) c) d) e) 64.07 1:27 AM

43 Particle–Mole-Mass Conversions
eg. How many molecules are in 26.9 g of water? m = 26.9 g Mwater= g/mol NA = x 1023 molecules/mol Find N 1:27 AM

44 Particle–Mole-Mass Conversions
N = n x NA = X x 1023 = 8.99 x 1023 molecules = mol H2O 1:27 AM

45 Particle–Mole-Mass Conversions
eg. A sample of Sn contains 4.69 x 1028 atoms. Calculate its mass. N = 4.69 x 1028 NA = x 1023 molecules/mol MSn = g/mol Find m 1:27 AM

46 Particle–Mole-Mass Conversions
m = n x M = mol x g/mol = 9.24 x 10 6 g = 77,881 mol 1:27 AM

47 Particle–Mole-Mass Conversions
Calculate the mass of 4.80 x 1024 water molecules. How many grams are in 2.53 x 1026 CH4 molecules? How many atoms are in 68.0 g of Sn? Calculate the number of molecules in 105 g of C6H12O6. 1:27 AM

48 Particle–Mole-Mass Conversions
Particles (N) Moles (n) Mass (m) 4.80 x 1024 H2O molecules 2.53 x 1026 CH4 molecules 68.0 g of Sn 105 g of C6H12O6 1:27 AM

49 Particle–Mole-Mass Conversions
particles (N) Moles (n) Mass (m) 5.98 x 1026 Cu atoms 4.50 g H2O 6.15 mol O3 1:27 AM

50 Particle–Mole-Mass Conversions
particles (N) Moles (n) Mass (m) 4.18 x 1022 Al atoms 2.45 g C8H18 0.145 mol S2F4 1:27 AM

51 Particle–Mole-Mass Conversions
x NA x M particles(N) moles (n) mass (m) ÷ M ÷ NA Practice: p #’s p #’s 34 – 37 p # 15 1:27 AM

52 Particle–Mole-Mass Conversions
eg. How many molecules are in 4.78 g of glucose? m = 4.78 g Mwater= g/mol NA = x 1023 molecules/mol Find N 1:27 AM 1:27 AM

53 Particle–Mole-Mass Conversions
N = n x NA = X x 1023 = 8.99 x 1023 molecules = mol glucose 1:27 AM 1:27 AM

54 Particle–Mole-Mass Conversions
Practice: p #’s p #’s 34 – 37 p # 15 1:27 AM

55 Molar Mass Calculations
Practice: p #’s 5 - 8 p #’s 2, 4, 5 p #’s 13, 14, p #’s 15, 17 – 19, 1:27 AM

56 Molar Volume The volume of a gas increases when
temperature increases but decreases when pressure increases . The volume of gases is measured under conditions of Standard Temperature and Pressure (STP) 1:27 AM

57 Molar Volume Standard Pressure – 101.3 kPa Standard Temperature – 0 °C
Avogadro hypothesized that equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. 1:27 AM

58 Molar Volume Experimental evidence shows the volume of one mole of ANY GAS at STP is 22.4 L/mol OR VSTP = 22.4 L/mol 1:27 AM

59 Molar Mass Calculations
given volume in Litres Molar Mass Calculations N = n x NA v = n x VSTP m = n x M 1:27 AM

60 Molar Mass Calculations
x NA x M particles(N) moles (n) mass (m) ÷ M ÷ NA x VSTP ÷ VSTP volume (v) 1:27 AM 1:27 AM

61 1:27 AM

62 1:27 AM

63 Molar Volume p. 73 #’s 38 – 43 p. 74 #’s 1 – 4 p. 76 #’s 26, 27
WorkSheet: The Mole #6 1:27 AM

64 1:27 AM

65 Percent Composition (p. 79)
The mass percent of a compound is the mass of an element in a compound expressed as a percent of the total mass of the compound. 1:27 AM

66 Percent Composition eg g of a compound was analyzed and found to contain 6.00 g of hydrogen and 2.50 g of carbon. Calculate the mass percent for each element. p. 82 #’s 1 - 4 1:27 AM

67 Percent Composition mass percent may be found using the formula & the molar mass of a compound. eg. Find the percentage composition for CH4 1:27 AM

68 Percent Composition p. 85 #’s 5 - 8 M = 12.01 g/mol + 4(1.01 g/mol)
1:27 AM

69 1:27 AM

70 p. 85 #’s 5 - 8 p. 86 #’s 1, 3 – 6 p #’s 6 – 10 1:27 AM

71 Empirical Formulas An empirical formula gives the simplest ratio of elements in a compound. A molecular formula shows the actual number of atoms in a molecule of a compound. Ionic compounds are always written as empirical formulas 1:27 AM

72 Empirical Formulas Compound Molecular Formula Empirical Formula butane
C4H10 glucose C6H12O6 water H2O benzene C6H6 C2H5 CH2O H2O CH 1:27 AM

73 Empirical Formulas (p.87)
1:27 AM

74 Empirical Formulas The empirical formula of a compound may be determined by using the % composition of a given compound. 1:27 AM

75 Empirical Formulas Method:
assume you have g of the compound (ie. change % to g) calculate the moles (n) for each element divide each n by the smallest n to get the ratio for the empirical formula 1:27 AM

76 Empirical Formulas eg. A compound was analyzed and found to contain 87.4% N and 12.6 % H by mass. Determine the empirical formula of the compound. p. 89 #’s 1:27 AM

77 Empirical Formulas When finding the EF, the mole ratio may not be a whole number ratio. eg. A compound contains 84.73% N and % H by mass. Determine the empirical formula of the compound. 1:27 AM

78 p. 90 1:27 AM

79 Empirical Formulas eg. A compound contains 89.91% C and % H by mass. Determine the empirical formula of the compound. p. 91 #’s 13 – 16 p. 94 #’s 2-4, 6, 7 Answers on p. 109 1:27 AM

80 MgO Lab 1:27 AM

81 Molecular Formulas The molecular formula of a compound is a multiple of the empirical formula. See p. 95 1:27 AM

82 Molecular Formulas To find the molecular formula we need the empirical formula and the molar mass of the compound eg. The empirical formula of hydrazine is NH2. The molar mass of hydrazine is g/mol. What is the molecular formula for hydrazine? 1:27 AM

83 Molecular Formulas p #’s 17 – 20 p. 107, 108 #’s 1:27 AM

84 CHC analyzer (p. 99 – 101) 1. Describe the operation of a carbon hydrogen combustion analyzer. g of carbon dioxide and 10.8 g of water is collected in a CHC analysis. Determine the empirical formula of the hydrocarbon. p #’s 21, 22 1:27 AM

85 Formula of a hydrate To determine the formula of a hydrate:
- calculate the moles of water - calculate the moles of anhydrous compound - determine the simplest ratio 1:27 AM

86 Formula of a hydrate eg. Use the data below to determine the value of x in LiCl• xH2O. mass of crucible = g crucible + hydrate = g crucible + anhydrous compound= g 1:27 AM

87 mwater = – = g H2O mLiCl = – = g LiCl 1:27 AM

88 eg. Na2CO3. xH2O crucible = 15.96 g crucible + hydrate = 22.19 g
crucible + anhydrous compound = g 1:27 AM

89 crucible + anhydrous compound = 158.23 g p. 103; # 24 Lab: pp. 104-105
eg. CoCl2.xH2O crucible = g crucible + hydrate = g crucible + anhydrous compound = g p. 103; # 24 Lab: pp 1:27 AM

90 Formula of a hydrate mass of empty beaker mass of beaker & hydrate
mass of beaker & anhydrous compound 1:27 AM

91 Review – Chp. 3 p. 86 #’s 1, 3 – 6 p. 94 #’s 1 – 7 p. 103 # 23
1:27 AM

92 Test p. 54 #’s 5 – 8 p. 45 #’s 1 – 4 p. 65 #’s 2, 4, 5 p. 46 #’s 1 – 6
1:27 AM

93 Test p. 82 #’s 1 – 4 p. 85 #’s 5 – 8 p. 89 #’s 9 – 12 p. 91 #’s 13 – 16 p. 97 #’s p. 103 #’s 23 – 24 p. 86 #’s 1, 3 – 6 p. 94 #’s 1 - 7 p. 106 #’s 1 - 3, 6, 7 p. 107 – 109 #’s 5 – 23, 25 1:27 AM

94 Test Friday – Dec. 4 1. Formula of a hydrate - lab activity
- p. 103 # 24 % composition - given mass p. 82 #’s 1 – 4 - given formula p. 85 #’s 5 - 8 p. 86 #’s 3 & 4 p. 103 # 23 p. 107 # 5 EF and MF - What is an empirical formula - Finding EF from % composition pp. 89, 91 #’s (watch for .5 or .333) - Finding MF from EF and molar mass p. 97 #’s 17 – 20 p. 108 #13 4. Mole calculations – Chp. 2 1:27 AM

95 Stoichiometry (Chp.4) Stoichiometry is the determination of quantities needed for, or produced by, chemical reactions. Ratios from balanced chemical equations are used to predict quantities. 1:27 AM

96 Clubhouse sandwich recipe
Stoichiometry – p. 111 Clubhouse sandwich recipe 1:27 AM

97 Clubhouse sandwich recipe
Fill in the missing quantities: Slices of Toast Slices of Turkey Strips of Bacon # of Sandwiches 12 27 66 100

98 Mole Ratios A mole ratio is a mathematical expression that shows the relative amounts of two species involved in a chemical change. 1:27 AM

99 Mole Ratios A mole ratio Comes from a balanced chemical equation
Shows the relative amounts of the reactants/products in moles Looks like 1:27 AM

100 N2(g) + 3 H2 (g) → 2 NH3 (g) 20 66 140 81 1:27 AM 1:27 AM

101 C3H8 + 5 O2 → 3 CO2 + 4 H2O How many moles of CO2 are produced
when 31.5 mol of O2 react? 1:27 AM

102 C3H8 + 5 O2 → 3 CO2 + 4 H2O How many moles of H2O are produced
when 1.35 mol of O2 react? 1:27 AM 1:27 AM

103 C3H8 + 5 O2 → 3 CO2 + 4 H2O How many moles of C3H8 are needed to
react with mol of O2? 1:27 AM 1:27 AM

104 C5H12 + O2 → CO2 + H2O How many moles of CO2 are produced
when 6.35 mol of O2 react? 1:27 AM 1:27 AM

105 Al(s) + Br2(l) → AlBr3(s) How many moles of Br2 are needed to
produce mol of AlBr3? p #’s 4 – 7 p #’s 1:27 AM 1:27 AM

106 Mole to Mole Stoichiometry
How many moles of copper would be produced if 20.5 mol of copper (II) oxide decomposes? 1:27 AM 1:27 AM

107 Mass to Mole Stoichiometry
How many moles of water are produced when 20.6 g of CH4 burns? 1:27 AM 1:27 AM

108 Mass to Mole Stoichiometry
How many moles of nitrogen gas are needed to produce 6.75 g of NH3 in a reaction with hydrogen gas? 1:27 AM

109 Mass to Mole Stoichiometry
How many moles of silver would be produced if 10.0 g of silver nitrate reacts with copper metal? 1:27 AM

110 Mass to Mole Stoichiometry
How many moles of water are produced when 20.6 g of C6H12 burns? 1:27 AM

111 Mass to Mole Stoichiometry
How many moles of water are produced when 20.6 g of CH4 burns? 1:27 AM 1:27 AM

112 Mass to Mole Stoichiometry
1:27 AM 1:27 AM

113 Mole to Mass Stoichiometry
What mass of CaCl2 is produced when 4.38 mol of Ca(NO3)2 reacts with NaCl? 1:27 AM

114 Mole to Mass Stoichiometry
What mass of copper would be produced if 20.5 mol of CuO decomposes? 1:27 AM 1:27 AM

115 Four step stoichiometry
Write a balanced chemical equation Calculate moles given Mole ratio – find moles required Calculate required quantity m = n x M v = n x Vstp N = n x NA 1:27 AM

116 Mass to Mass Stoichiometry
How many grams of water are produced when 5.45 g of C3H8 burns? 1:27 AM 1:27 AM

117 1:27 AM

118 Mass to Mass Stoichiometry
eg. Calculate the mass of HCl needed to react with 3.56 g of Fe to produce FeCl2. 1:27 AM 1:27 AM

119 Stoichiometry (Chp.4) eg. What mass of CO2 gas is produced when 45.9 g of CH4 burns ? Step #1 CH O2 → CO H2O 45.9 g ? g 1:27 AM

120 1:27 AM

121 eg. How many moles of HCl needed to react with 3
eg. How many moles of HCl needed to react with 3.56 g of Fe to produce FeCl2. 1:27 AM

122 Mole Calculations (p. 121 #13)
3.56 g ? g Fe HCl → FeCl H2 Step #2 = mol Fe Step #3 = mol HCl 1:27 AM

123 Mole Calculations p. 122 #15 Given 32.0 g of sulfur (M = 256.56 g/mol)
Find mass of ZnS #2 n = mol S8 #3 n = mol ZnS (M = g/mol) #4 m = 97.2 g ZnS 1:27 AM

124 Mole Calculations p. 123 #18 Given 33.5 g of H3PO4 (M = 98.00 g/mol)
Find mass of MgO #2 n = mol H3PO4 #3 n = mol MgO (M = g/mol) #4 m = 20.7 g MgO 1:27 AM

125 Mole Calculations p. 123 #17 Given 25.0 g of Al4C3 (M = 143.95 g/mol)
Find volume of CH4 #2 n = mol Al4C3 #3 n = mol CH4 (MV = 22.4 L/mol) #4 m = 11.7 L CH4 1:27 AM 1:27 AM

126 How many moles of aluminum chloride can be produced from the reaction of chlorine and 10.8 mol of aluminum ? Cl2(g) + Al(s) → AlCl3(s) 1:27 AM

127 How many moles of magnesium are needed to react with 27 g of iodine to form magnesium iodide?
1:27 AM

128 How many grams of nitrogen are needed to react with 14
How many grams of nitrogen are needed to react with 14.0 mol of oxygen to produce nitrogen dioxide ? N2(g) O2(g) → NO2(g) 1:27 AM

129 Mole Calculations (p. 121 #14)
2.34 g ? L #2 n = mol NO2 #3 n = mol O2 (MV = 22.4 L/mol) #4 n = ( )(22.4) = L O2 1:27 AM

130 Limiting Reactant (p. 128) 10.0 g of Li reacts with 15.0 g of Br2. Calculate the mass of LiBr produced. Half the class finds yield from 10.0 g of Li. Other half find yield from 15.0 g of bromine. 1:27 AM

131 Limiting Reactant (p. 128) 2 Li Br2 2 LiBr 10.0 15.0 1:27 AM
WorkSheet: LR Introduction (wp file) 1:27 AM 131

132 Limiting Reactant (p. 128) The Limiting Reactant (LR) OR Limiting Reagent (LR) is the substance that is completely used in a chemical reaction. The Excess Reactant is the reactant that is left over after a reaction is complete. 1:27 AM

133 Limiting Reactant (p. 128) eg g of NaI reacts with 2.00 g of Pb(NO3)2. Determine the LR and calculate the amount of PbI2 produced. write a balanced equation find n for each reactant (Step #2) find moles produced by each reactant (Step #3) 1:27 AM

134 Pb(NO3)2 + 2 NaI → 2 NaNO3 + PbI2 2.00 g 2.00 g nPb(NO)3 = 2.00 g
g/mol = mol nNaI = g g/mol = mol 1:27 AM

135 nPbI2 = 0.006038 mol Pb(NO3)2 x 1 mol PbI2 1 mol Pb(NO3)2
nPbI2 = mol NaI x 1 mol PbI2 2 mol NaI = mol PbI2 mPbI2 = mol x g/mol = g PbI2 1:27 AM

136 What mass of calcium carbonate will be produced when 20
What mass of calcium carbonate will be produced when 20.0 g of calcium phosphate reacts with 15.0 g of sodium carbonate? (14.2 g) 3 Na2CO3 + Ca3(PO4)2 → 3 CaCO3 + 2 Na3PO4 1:27 AM

137 Ba(NO3)2 + NaOH → Ba(OH)2 + NaNO3
What mass of barium hydroxide will be produced when 10.0 g of barium nitrate reacts with 30.0 g of sodium hydroxide? (6.56 g) Ba(NO3) NaOH → Ba(OH) NaNO3 = mol Ba(NO3)2 = mol NaOH 1:27 AM

138 Using Ba(NO3)2 = 0.03826 mol Ba(OH)2 Using NaOH = 0.375 mol Ba(OH)2
1:27 AM

139 What volume of hydrogen gas at STP will be produced when 10
What volume of hydrogen gas at STP will be produced when 10.0 g of zinc metal reacts with 20.0 g of hydrogen chloride? Zn HCl → H2 + ZnCl2 1:27 AM

140 1:27 AM

141 1:27 AM

142 Law of Conservation of Mass (p. 118)
In a chemical reaction, the total mass of reactants always equals the total mass of products. eg. 2 Na3N → 6 Na + N2 When g of Na3N decomposes g of N2 is produced. How much Na is produced in this decomposition?

143 Law of Conservation of Mass ( p. 118)
eg. To produce 90.1 g of water, what mass of hydrogen gas is needed to react with 80.0 g of oxygen? eg. If 3.55 g of chlorine reacts with exactly 2.29 g of sodium, what mass of NaCl will be produced? 1:27 AM

144 Percent yield (p. 137) The theoretical yield is the amount of product that we calculate using stoichiometry The actual yield is the amount of product obtained from a chemical reaction 1:27 AM

145 Percent yield (p. 137) p #’s 31, 32, & 33 1:27 AM

146 DEMO: silver nitrate + copper
Equation: Mass AgNO3 = Mass Cu = 1:27 AM

147 DEMO: silver nitrate + copper
Mass of filter paper and precipitate = Mass of empty filter paper = Mass of precipitate = 1:27 AM


Download ppt "Unit 1: Stoichiometry Chemistry 2202 1:27 AM."

Similar presentations


Ads by Google