Download presentation
1
Integration of sin(ax + b) & cos(ax + b)
Consider If f(x) = 1/asin(ax + b) then f´(x) = 1/acos(ax + b) X a = cos(ax + b) If g(x) = -1/acos(ax + b) then g´(x) = 1/asin(ax + b) X a = sin(ax + b) It now follows that cos(ax + b)dx = 1/asin(ax + b) + C (supplied) sin(ax + b)dx = -1/acos(ax + b) + C
2
4sin(2x + ) dx cos(4 - ) d -6sin(3 + /2) d Example
= 1/4sin(4 - ) + C Example -6sin(3 + /2) d = 1/3 X 6cos(3 + /2) + C = 2cos(3 + /2) + C Example 4sin(2x + ) dx = [ ] ½ X –4cos(2x + ) /2 /2 = [ ] –2cos(2x + ) /2 = (-2cos3) - (-2cos2) = 2 – (-2) = 4
3
Example By firstly rearranging the formula cos2 = 2cos2 - 1 Find cos2 d /2 *********** cos2 d /2 cos2 = 2cos2 - 1 /2 2cos2 - 1 = cos2 = (1/2cos2 + 1/2) d 2cos2 = cos2 + 1 = [ ½ X 1/2sin2 + 1/2 ] /2 cos2 = 1/2cos2 + 1/2 = [1/4sin2 + 1/2 ] /2 = (/4 + 1/4sin) - ( sin0) = /4
4
Example Find the shaded area !! Curves cross when sin2x = cosx
y = sin2x B y = cosx C Curves cross when sin2x = cosx 2sinxcosx – cosx = 0 cosx(2sinx – 1) = 0 cosx = 0 or sin x = 1/2 x = /2 or 3/2 x = /6 or 5/6 B A C
5
First area = (sin2x – cosx) dx
/2 /6 = [ ] /2 -1/2cos2x - sinx /6 = ( -1/2cos - sin/2) - (-1/2cos /3 - sin/6) = (1/2 – 1) - (-1/4 – ½) = ½ - 1+ ¼ + ½ = 1/4 The diagram has ½ turn symmetry about point B So the total area = 2 X ¼ = 1/2unit2
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.