Presentation is loading. Please wait.

Presentation is loading. Please wait.

Calibration of CoRoT seismological methods using the star  Boo observed by MOST Marian Doru Suran Astronomical Institute of the Romanian Academy e-mail:

Similar presentations


Presentation on theme: "Calibration of CoRoT seismological methods using the star  Boo observed by MOST Marian Doru Suran Astronomical Institute of the Romanian Academy e-mail:"— Presentation transcript:

1 Calibration of CoRoT seismological methods using the star  Boo observed by MOST Marian Doru Suran Astronomical Institute of the Romanian Academy e-mail: suran@aira.astro.rosuran@aira.astro.ro Supported by the Romanian Space Agency (ROSA) contract Nr. 124/30.09.2004

2  Boo High precision stellar modeling and rigorous asteroseismic tests for p and g modes: Observations: –MOST space mission (g and p modes 100< i <700  Hz, l=0) (M); –Kjeldsen (p modes, 600< i <1000  Hz, l=0-2) (K); –Carrier (p modes, 600< i <1000  Hz, l=0-2) (C);  40 frequencies M+K+C (see Table 1) –HIPPARCOS astrometry: Bedding 1997 (see Table 2) –Interferometry: VLTI/VINCI, Thevenin et al. 2005 (see Table 2) Theory: –QDG method, Guenther&Brown 2004 (M); –Guenther et al. 2005 (M, M+K, M+C) (see Table 2) –Straka et al. 2005 (M, M+K with turbulence) (see Table 2)

3  Boo Our asteroseismological method: –Minimization of: –for dense grids of stellar evolutive tracks: [M, X,Z, t ]. –us: CESAM (Cesam2k V2)+ LNAWENR (linear, nonadiabatic, nonradial) with an automated queue of calculations for entire tracks (pms-ms-postms): [M,X,Z,t]  [M,X,Z,T e ]  [q i,q i,ad,q i,nad ]  [  R,  I ],(  q i /q i )  [  2 [M,X,Z,Te, obs,k],  DZ ] CESAM osc-ad+osc-nad LNAWENR SEISMOLOGY where  DZ >0: theoretical excited and stables modes. Our calculations: –40 observed modes M+K+C (g, p, l=0-2, see Table 1); –  2 minima for a grid of tracks: M = 1.70 M , 1.71 M , 1.72 M  ; Z = 0.02; 0.04; – range of effective temperature: 6050  60K; Results are presented in tables 1-2 and in Figures 1-5.  Calibration COROT/MOST using CESAM+LNAWENR/YREQ+QDG.

4  Boo References Bedding, T.R. 1997, astro-ph/9709005; Carrier, F., Eggenberger, P., Bouchy, F. 2005, A&A, 434,550 (C); Di Mauro, M.P., Christensen-Dalsgaard, J., Kjeldsen, H.,Bedding, T.R., Paterno, L. 2003, A&A,404, 341; Guenther, D.B. 2004, Ap.J., 612,454; Guenther, D.B., Brown, K.I.T. 2004, Ap.J., 600, 419 (QDG); Guenther, D.B., Kallinger, T., Reegen, P., Weiss, W. W., Matthews, J.M., Kusching, R., Marchenko, S., Moffat, A. F. J, Rucinski, S.M., Sasselov, D., Walker, G.A.H. 2005, astro-ph/0508449 (M); Kjeldsen, H., Bedding,T.R., baldry, I.K. Bruntt, H., Buthler, R.P., Fischer, D.A., Frandsen, S., Gates, E.L. 2003, A.J.,126,1483 (K); Straka, C., Demarque, P., Guenther, D.B., Li, L., Robinson F.J. 2005, astro- ph/0509403; Thevenin, F., Kervella, P., Pichon, B., Morel, P., di Folco, E., Lebreton, Y. 2005, A&A, 436, 253;

5 Figure 1. Evolutionary tracks in the HR diagram for a star of 1.71 M , Z = 0.04 star in diagram HR. Also, in the diagram the position of the star  Boo is indicated.

6 Figure 2. The minima of the  2 as function of log(T e ), calculated using the observed modes for the star  Boo (40 modes M+K+C) and the evolutionary postms tracks of 1.70 M  (blue),1.71 M  (red), 1.72 M  (green). Up: Z = 0.04. Down: Z = 0.02. The deepest minima of  2 coresponds to the star of 1.71M , Z =0.04. In brown is indicated the observed zone in temperature for the star  Boo: 6050  60 K. In magenta is indicated the corresponding number of modes excited but unstable, from the 40 modes taken into account for the star  Boo (zero means all modes excited and stable).

7 Figure 3. The minima of the  2 as function of log(T e ), calculated using the observed modes for the star  Boo. Thick lines are for all 40 modes (M+K+C), thin lines are for 8 modes (M, see Guenther et al. 2005). The evolutionary postms tracks are for a star of 1.71 M , Z = 0.04, X = 0.71 (red) and X = 0.70 (blue). In brown is indicated the observed zone in temperature for the star  Boo: 6050  60 K.

8 Figure 4. Up: The spectra of the observed modes for the star  Boo (40 modes M+K+C; in red) compared with the theoretical ones (in  DZ ; blue ) for a star of 1.71M  Z=0.04. Down: the corresponding (O-C)i for the 40 modes M+K+C as function of frequency.

9 Figure 5. The comparison of the calculated i,COROT (this paper, CESAM+ LNAWENR model) and i,MOST (Guenther et al. 2005, Straka et al 2005, YREC+QDG model without turbulence). The comparison was made for 100< i <1100  Hz, l = 0-2 (see Table 1).

10

11

12

13 ParameterBucharest minim I [8 modes (M); 40modes (M+K+C)] 1.71M , Z=0.04 Bucharest minim II 40modes (M+K+C) 1.71M , Z=0.04 Guenther with turbulence l = 0 [(M) ; (M+K)] 1.71M , Z=0.04 Guenther without turbulence l = 0 (M+K) 1.706M , Z=0.04 Guenther without turbulence l = 0 (M+C) 1.71M , Z=0.04 HIPPARCOS Bedding (1997) + interferometry Thevenin et al(2005) without diffusion 22 0.967;8.9412.011.4; 2.518.131. M/M  1.71 1.70 Z0.04 0.367 TeTe 6105;6088603460286078 6050  60 6090 L/L  8.778.829.038.83 9.46  0.65 8.978 R/R  2.782.842.68 2.81  0.08 + 2.68  0.05 2.697 Paralax 85.8  2.3 t (Gyr)2.352.40 2.35 Table 2. The physical parameters for the star  Boo obtained using different methods.


Download ppt "Calibration of CoRoT seismological methods using the star  Boo observed by MOST Marian Doru Suran Astronomical Institute of the Romanian Academy e-mail:"

Similar presentations


Ads by Google