Presentation is loading. Please wait.

Presentation is loading. Please wait.

Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,

Similar presentations


Presentation on theme: "Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,"— Presentation transcript:

1 Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid, Spain Cis-METHYL VINYL ETHER: THE ROTATIONAL SPECTRUM UP TO 600 GHz Lucie Kolesniková, Adam M. Daly, José L. Alonso International Symposium on Molecular Spectroscopy, June 16  20, 2014 Champaign-Urbana, Illinois, USA

2  Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995) CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH

3  Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) 197-204; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530. CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH detected b tentatively detected c detected d

4  Gas-phase reactions leading from alcohols to ethers a CH 3 OH Introduction and motivation CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) 197-204; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530; e B.E. Turner, A.J. Apponi, ApJ 561 (2001) L207-L210. detected b tentatively detected c detected d CH 2 CHOH detected e CH 3 OCHCH 2 in the ISM ??? data only up to 40 GHz

5 Experimental details Double pass configuration (50 – 170 GHz)

6 Experimental details Double pass configuration (50 – 170 GHz)

7 Experimental details Double pass configuration (50 – 170 GHz)

8 Experimental details Double pass configuration (50 – 170 GHz)

9 Experimental details Double pass configuration (50 – 170 GHz)

10 Experimental details Single pass configuration (170 – 1000 GHz)

11 Experimental details Single pass configuration (170 – 1000 GHz)

12 Experimental details Single pass configuration (170 – 1000 GHz) 50 – 600 GHz room temperature 20  bar

13 Rotational spectra and analysis  a  = 0.295 (2) D  b  = 0.910 (2) D

14 Rotational spectra and analysis  a  = 0.295 (2) D  b  = 0.910 (2) D 23 (A’’) 24 (A’’) 16 (A’) 24  234 cm  1 23  244 cm  1 16  327 cm  1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982) 215 - 228. Vib. modes below 400 cm  1 : a

15 Rotational spectra and analysis

16 ground state v 24 = 1 v 23 = 1v 16 = 1

17 Rotational spectra and analysis cent (MHz)  (MHz)

18 Rotational spectra and analysis G.S. 1  0 v 24 = 1 1  0 v 23 = 1 1  0 v 16 = 1 1  0 cent (MHz)  (MHz)

19 Rotational spectra and analysis  Ground state  > 2 800 transitions (J’’ = 69, K a ’’ = 25)  Watson’s A-reduced Hamiltonian (I r -representation)  v 24 = 1 and v 23 = 1 excited states  failure of the Watson’s semirigid Hamiltonian  IR data a :  E = E 23  E 24  10.5 cm  1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982) 215 - 228.

20 Rotational spectra and analysis E red = E  E 24  J(J + 1)(B + C)/2 E red (cm  1 ) ss 8 12 0, 1 16

21 Rotational spectra and analysis E red = E  E 24  J(J + 1)(B + C)/2 E red (cm  1 ) ss 8 12 0, 1 16 K a = 0 0, 1 K a = 0 0, 1 1, 2 8 5 2, 3 3, 4

22 Rotational spectra and analysis E red = E  E 24  J(J + 1)(B + C)/2 E red (cm  1 ) ss 8 12 0, 1 16 K a = 0 0, 1 K a = 0 0, 1 1, 2 8 5 2, 3 3, 4

23 Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states 23 (A’’) 24 (A’’) C s symmetry  (v 24 = 1)   (v 23 = 1)   (J c ) = A’ c-type Coriolis Fermi-type H C (24,23) = iG c J c + F ab (J a J b + J b J a ) + … H F (24,23) = W F + W F J J 2 + W F K J a 2 +W ± (J b 2 – J c 2 ) + …

24 Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states > 1 200 transitions J’’ = 61, K a ’’ = 10 for v 24 = 1 and J’’ = 59, K a ’’ = 6 for v 23 = 1  E = 10.204550 (3) (cm  1 )

25 Rotational spectra and analysis v 23 = 1, K a = 1 v 23 = 1, K a = 0 v 24 = 1, K a = 2 v 24 = 1, K a = 3

26 Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states  V 3 = 1256 cm –1 b  v 23 = 1 state: higher K a, Q-branches transitions affected by the perturbations with v 24 = 1 state  v 24 = 1 state : only those affected by perturbations with v 23 = 1 state b R. Meyer, T.K. Ha, M. Oldani, W. Caminati, The Journal of Chemical Physics 86 (1987) 1848-1857.

27 Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1

28 Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1

29 Rotational spectra and analysis  v 16 = 1 excited state  isolated state  > 500 transitions (J’’ = 69, K a ’’ = 25)  A-reduction (I r -representation) 16 (A’)

30 Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz)18224.9674 (1)18223.0348 (6)18301.885 (3)18395.7066 (9) B(MHz)6388.99209 (3)6359.0805 (1)6330.9952 (5)6365.8442 (2) C(MHz)4875.85998 (3)4875.1527 (1)4855.6034 (1)4854.33587 (9) JJ (kHz)3.85336 (2)3.8690 (1)3.7446 (4)3.8669 (1)  JK (kHz)–11.5212 (1)–11.502 (2)–10.112 (8)–13.760 (2) KK (kHz)49.5624 (3)49.165 (7)49.74 (6)56.44 (1) JJ (kHz)1.183668 (7)1.18187 (7)1.1392 (2)1.20168 (7) KK (kHz)6.2388 (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] …  JK (mHz)71.9 (1)[71.9] 160 (1)  KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] 0.208 (8)  JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) 305924.7 (1) (cm –1 ) 10.204550 (3) GcGc (MHz) [1381] GcJGcJ (MHz) 0.00662 (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) –0.00275 (2) W±W± (MHz) 1.19453 (5) G c KK (MHz) 0.000077 (2)  fit (kHz)32 5832

31 Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz)18224.9674 (1)18223.0348 (6)18301.885 (3)18395.7066 (9) B(MHz)6388.99209 (3)6359.0805 (1)6330.9952 (5)6365.8442 (2) C(MHz)4875.85998 (3)4875.1527 (1)4855.6034 (1)4854.33587 (9) JJ (kHz)3.85336 (2)3.8690 (1)3.7446 (4)3.8669 (1)  JK (kHz)–11.5212 (1)–11.502 (2)–10.112 (8)–13.760 (2) KK (kHz)49.5624 (3)49.165 (7)49.74 (6)56.44 (1) JJ (kHz)1.183668 (7)1.18187 (7)1.1392 (2)1.20168 (7) KK (kHz)6.2388 (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] …  JK (mHz)71.9 (1)[71.9] 160 (1)  KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] 0.208 (8)  JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) 305924.7 (1) (cm –1 ) 10.204550 (3) GcGc (MHz) [1381] GcJGcJ (MHz) 0.00662 (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) –0.00275 (2) W±W± (MHz) 1.19453 (5) G c KK (MHz) 0.000077 (2)  fit (kHz)32 5832 New laboratory measurements Precise spectroscopic constants Search for cis-methyl vinyl ether in the ISM

32 Acknowledgements …and all the members of the CSD 2009-00038 Molecular Astrophysics Grant VA070A08 Grants CTQ 2010- 19008, AYA 2009-07304 and AYA 2012-32032


Download ppt "Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,"

Similar presentations


Ads by Google