Download presentation
Presentation is loading. Please wait.
Published byIris Eaton Modified over 9 years ago
1
Beyond FOIL Alternate Methods for Multiplying and Factoring Polynomials
2
FOIL Method Distributive Method Box Method Vertical Method Multiplying Polynomials
3
Distributive Method STEP 1: Rewrite the problem
5
Distributive Method STEP 2: Distribute
7
Distributive Method STEP 3: Combine Like Terms
9
Multiplying Polynomials (5x – 6)(3x + 8) WATCH THOSE SIGNS!!!
10
Rewrite the problem
11
Distribute
12
Combine Like Terms
13
Binomial x Trinomial Multiplying Polynomials
14
Rewrite the problem
15
Distribute
16
Combine Like Terms
17
(3x + 2)(5x + 4) Multiplying Polynomials BOX Method
18
STEP 1: Draw the BOX
19
Draw the Box 2x2 for a Binomial x Binomial
20
BOX Method STEP 2: Place terms on outside
22
BOX Method STEP 3: Multiply: Find the area of each box.
24
BOX Method STEP 3: Combine Like Terms
26
BOX Method LET’S SEE THAT AGAIN!
32
What about a binomial x trinomial?
35
Vertical Method
36
How do you multiply without a calculator?
38
What if we tried it this way?
41
Can we do that again?
44
MULTIPLYING POLYNOMIALS (3x + 2)(5x + 4)
45
VERTICAL Method STEP 1: Rewrite the Problem
46
VERTICAL Method
47
STEP 2: MULTIPLY
49
VERTICAL Method STEP 3: Combine Like Terms
51
VERTICAL Method
54
WHAT IF IT’S A TRINOMIAL x A BINOMIAL?
55
VERTICAL Method STEP 1: Rewrite the Problem
56
VERTICAL Method
57
STEP 2: MULTIPLY
59
VERTICAL Method STEP 3: Combine Like Terms
61
A SHORTCUT IS NOT A SHORTCUT IF IT IS THE ONLY WAY YOU KNOW.
63
FIRST FOIL METHOD F
64
OUTER FOIL METHOD O
65
INNER FOIL METHOD I
66
LAST FOIL METHOD L
68
Kinda
69
By Grouping GCF Trinomials Factoring Polynomials
70
Factor Pairs 24 1 · 24 2 · 12 3 · 8 4 · 6 40 1 · 40 2 · 20 4 · 10 5 · 8 84 1 · 84 2 · 42 3 · 28 4 · 21 6 · 14 7 · 12
71
Greatest Common Factor 63 1 · 63 3 · 21 7 · 9 84 1 · 84 2 · 42 3 · 28 4 · 21 6 · 14 7 · 12
72
( ) Factor by Grouping 15x 2 + 12xy + 35xz + 28yz 3x ( 5x ) + 7z ( 5x ) + 4y (5x + 4y)(3x+ 7z)
73
( ) Factor by Grouping 24ac – 9ad – 32bc + 12bd NEGATIVECHANGE -
74
( ) Factor by Grouping 24ac – 9ad – 32bc + 12bd 3a ( 8c ) - 4b ( 8c ) - 3d (8c – 3d)(3a- 4b) -
75
Factoring Trinomials without a leading coefficient x 2 + 8x + 15
76
Factor Start Here Ask Yourself: What are the factor pairs of 15, 1 · 15 3 · 5
77
x 2 + 8x + 15 Factor Start Here Ask Yourself: What are the factor pairs of 15, 1 · 15 3 · 5 whose sum 1+= 16 3+= 8 is 8?
78
x 2 + 8x + 15 Factor 15 5 1+= 16 3+= 8 x( ) x35++ What signs would make a + 8?
79
x 2 + 5x - 24 Factor Start Here Ask Yourself: What are the factor pairs of 24, 1 · 24 2 · 12 3 · 8 4 · 6
80
x 2 + 5x - 24 Factor Start Here Ask Yourself: What are the factor pairs of 24, whose difference 1- 2- is 5? 1 · 24 2 · 12 3 · 8 4 · 6 3- 4- = 23 = 10 = 5 = 2
81
( ) 4- 3- x 2 + 5x - 24 Factor 1- 2- 24 12 8 6 = 23 = 10 = 5 = 2 x( )x38-+ What signs would make a + 5?
82
x 2 – 8x - 105 Factor Start Here Ask Yourself: What are the factor pairs of 105, 1 · 105 3 · 35 5 · 21 7 · 15
83
7- 5- 3 · 105 x 2 - 8x - 105 Factor Start Here Ask Yourself: What are the factor pairs of 105, whose difference 1- 3- is 8? 1 · 35 5 · 21 7 · 15 =104 = 32 = 16 = 8
84
3- 7- 5- 105 x 2 - 8x - 105 Factor 1- 35 21 15 =104 = 32 = 16 = 8 ( )x x715+- What signs would make a - 8?
85
Factoring Trinomials with a leading coefficient 6x 2 + 19x + 10
86
Factor 1 st Step Multiply Leading Coefficient and Constant
87
Multiply 6x 2 + 19x + 10 60 x 2 nd Step Factor Pairs of 60
88
Factor Pairs 6x 2 + 19x + 10 60 1 · 60 2 · 30 3 · 20 4 · 15 5 · 12 6 · 10 3 rd Step Whose sum Is 19. =61 =32 =23 =19
89
Rewrite 6x 2 + 19x + 10 60 1 · 60 2 · 30 3 · 20 4 · 15 5 · 12 6 · 10 4 th Step Rewrite the Polynomial =61 =32 =23 =19
90
Rewrite 6x 2 + 19x + 10 60 1 · 60 2 · 30 3 · 20 4 · 15 5 · 12 6 · 10 First Term =61 =32 =23 =19 6x 2 Factor Pair 4x15x Last Term + 10 Choose Signs ++
91
Rewrite 6x 2 + 19x + 10 60 1 · 60 2 · 30 3 · 20 4 · 15 5 · 12 6 · 10 5 th Step Factor by Grouping =61 =32 =23 =19 6x 2 4x15x+ 10++
92
( ) 2x 6x 2 ( ) Grouping 6x 2 + 19x + 10 60 1 · 60 2 · 30 3 · 20 4 · 15 5 · 12 6 · 10 =61 =32 =23 =19 4x15x+10++ 2x ( ) 3x+ 2 55 +5 ( ) 3x + 2 (3x + 2)(2x+5)
93
Factoring With the BOX x 2 – 10x + 16
94
x 2 -10x + 16 Factor Start Here Ask Yourself: What are the factor pairs of 16, 1 · 16 2 · 8 4 · 4
95
4+ 2 · 1 · x 2 - 10x + 16 Factor Start Here Ask Yourself: What are the factor pairs of 24, whose sum 1+ 2+ is 10? 16 8 4 · 4 = 17 = 10 = 8
96
1+ 2+ 4+ x 2 - 10x + 16 BOX 16 8 4 = 17 = 10 = 8 Place terms inside the box. x2x2 -2x -8x 16 Use signs to make -10x
97
1+ 2+ 4+ x 2 - 10x + 16 BOX 16 8 4 = 17 = 10 = 8 Find the GCF of the columns and rows x2x2 -2x -8x 16 x-2 x -8
98
x2x2 -2x -8x 16 x-2 x -8 (x - 2)(x - 8)
99
Factoring With the BOX 3x 2 – 4x - 4
100
Multiply 3x 2 - 4x – 4 12 x
101
3x 2 - 4x – 4 Factor Pairs 12 1 · 12 2 · 6 3 · 4 =11 =4 =1
102
1- 2- 3- 3x 2 - 4x - 4 BOX 12 6 4 = 11 = 4 = 1 Place terms inside the box. 3x 2 2x -6x -4 Use signs to make -4x
103
1- 2- 3- 3x 2 - 4x - 4 BOX 12 6 4 = 11 = 4 = 1 Find the GCF of the columns and rows 3x 2 2x -6x -4 3x2 x -2
104
3x 2 2x -6x -4 3x2 x -2 (3x + 2)(x - 2)
105
Thank You!! Todd Rackowitz Independence High School todd.rackowitz@cms.k12.nc.us
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.