Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ocean chemistry coulter.

Similar presentations


Presentation on theme: "Ocean chemistry coulter."— Presentation transcript:

1 Ocean chemistry coulter

2 salinity On average, one kilogram of ocean water contains about 35 grams of salts—that is, 35 parts per thousand. 35/1000 The total amount of dissolved salts in a sample of water is the salinity of that sample. The substance we know as table salt (sodium chloride) is the salt present in the greatest amount in ocean water.

3 Composition of ocean water
When sodium chloride dissolves in water, it separates into sodium and chloride particles called ions Together, chloride and sodium make up almost 86% of the ions dissolved in ocean water.

4 salinity Variations in salinity- in most parts of the ocean the salinity is between 34 and 37 parts per thousand, but near the ocean’s surface, rain, snow, and melting ice add fresh water, lowering salinity. The salinity is lower near the mouths of large rivers (amazon/Mississippi). These rivers empty great amounts of fresh water into the ocean. Evaporation increases salinity. Water evaporates salt left behind. Salinity can be higher near the poles, the surface water freezes into ice. Salt is left behind in the remaining water

5 salinity Effects of salinity- salinity affects several properties of ocean water. Ocean water does not freeze until the temperature drops to about -1.9C. Has a higher density than fresh water; because of this seawater has great buoyancy. It lifts less dense objects floating in it.

6 Other ocean properties
Like temperature on land, temperature at the surface of the ocean vary with location and seasons. Gases in ocean water vary as well. Temperature of ocean water- the broad surface of the ocean absorbs energy from the sun. Because warm water is less dense than cold water, warm water forms only a thin layer on the ocean surface. The deeper you get in the ocean the colder and denser the water gets.

7 Other ocean properties
Ocean organisms use gases found in ocean water. (carbon dioxide, oxygen) Carbon dioxide is about 60 times as plentiful in the oceans as in the air. Algae need carbon dioxide for photosynthesis. Oxygen is scarcer in seawater than in air. Found near the surface, comes from photosynthesis of algae and the air above. The amount of oxygen in seawater is affected by the water temperature. Cold water contain more oxygen than warm. But still enough in warm water to support organism life.

8 Changes with depth Decreasing temperature- as you descend through the ocean, the water temperature decreases. There are three temperature zones in the water column. Surface zone- warmest, extends from the surface to between 100 and 500 meters. Transition zone- from bottom of surface zone to about 1 kilometer. (about 4 degrees Celsius) Deep zone average temperature is about 3.5C.

9 Changes with depth Pressure increases continuously with depth in the ocean. Because of the high pressure in the deep ocean, divers can descend safely only to about 40 meters. To observe the deep ocean, scientists must use a submersible, an underwater vehicle built of materials that resist pressure.

10 Investigating changes in density
Problem- can you design and build an instrument that can detect differences in density? Materials- thumbtacks, graduated cylinder, unsharpened pencil with eraser, metric ruler, fine-point permanent marker, thermometer, ice, balance, water, spoon, salt

11 procedure One way to measure the density of a liquid is with a tool called a hydrometer. You can make a simple hydrometer using an unsharpened wooden pencil. Starting at the unsharpened en of a pencil use a permanent marker to make marks every 2mm along the side of the pencil. Make longer marks for every whole centimeter. Continue until you have marked off 5cm Label each of the long marks, starting at the unsharpened end of the pencil. Insert 3 thumbtacks as weights into the eraser end of the pencil. Be careful not to cut yourself on the thumbtack Fill the graduated cylinder with 250 ml of water at room temperature. Place the pencil in the water eraser end down.

12 procedure Add or remove the thumbtacks and adjust their placement until the pencil floats upright, with about 2 cm sticking up above the surface of the water. In you notebook record the temperature of the water. Next to that number, record the reading on the pencil hydrometer at the surface of the water. Fill the graduated cylinder with cold water. Place the pencil hydrometer into the water, eraser end down. Then repeat step 7.

13 Design and build Using what you learned in part one, design and build a hydrometer that can detect density differences among different samples of water. Your hydrometer should: Be able to measure density differences between hot water and cold water. Be able to measure density differences between salt water and fresh water. Be constructed of materials approved by teacher Sketch your design in your lab report and make a list of materials you will need. Write a plan for how you will construct your hydrometer. After you have received your teacher’s approval for your design, build you hydrometer. Test your hydrometer by using it to measure density of water at different temperatures. Then test samples of water that have different salinities. Create a data table in which to record your results. Based on your tests, decide how you could improve the design of your hydrometer.

14


Download ppt "Ocean chemistry coulter."

Similar presentations


Ads by Google