Download presentation
Presentation is loading. Please wait.
Published byKerry Strickland Modified over 9 years ago
1
Daphne Koller Message Passing Belief Propagation Algorithm Probabilistic Graphical Models Inference
2
Daphne Koller BD C A 2: B,C 1: A,B 3: C,D 4: A,D C A B D Cluster Graph
3
Daphne Koller Passing Messages 2: B,C 1: A,B 3: C,D 4: A,D C A B D 2,1 = 1 1 (A,B) 4 (A,D) 2 (B,C) 3 (C,D) 1,4 = B 2,1 (B) (A,B)
4
Daphne Koller Passing Messages 2: B,C 1: A,B 3: C,D 4: A,D C A B D 1,2 = 2,1 = 2,3 = 3,2 = 3,4 = 4,3 = 1,4 = 4,1 = B 2,1 (B) (A,B) D 3,4 (D) (A,D) C 2,3 (C) (C,D) A 1,4 (A) (A,D) B 1,2 (B) (B,C) D 4,3 (D) (C,D) A 4,1 (A) (A,B) C 3,2 (C) (B,C)
5
Daphne Koller Cluster Graphs Undirected graph such that: – nodes are clusters C i {X 1,…,X n } – edge between C i and C j associated with sepset S i,j C i C j Given set of factors , we assign each k to a cluster C (k) s.t. Scope[ k ] C (k) Define
6
Daphne Koller Example Cluster Graph 1: A, B, C 3: B,D,F 2: B, C, D5: D, E 4: B, E B B B C D D E 1 = 1 2 = 2 3 6 4 = 5 5 = 4 3 = 7
7
Daphne Koller Different Cluster Graph 1: A, B, C 3: B,D,F 2: B, C, D5: D, E 4: B, E B B B,C D D E
8
Daphne Koller Message Passing 1: A, B, C 3: B,D,F 2: B, C, D5: D, E 4: B, E B B B C D D E
9
Daphne Koller Belief Propagation Algorithm Assign each factor k to a cluster C (k) Construct initial potentials Initialize all messages to be 1 Repeat – Select edge (i,j) and pass message Compute
10
Daphne Koller Belief Propagation Run 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0 5 10 15 20 Iteration # P(a 1 ) True posterior
11
Daphne Koller Different BP Run
12
Daphne Koller Summary Graph of clusters connected by sepsets Adjacent clusters pass information to each other about variables in sepset – Message from i to j summarizes everything i knows, except information obtained from j Algorithm may not converge The resulting beliefs are pseudo-marginals Nevertheless, very useful in practice
13
Daphne Koller END END END
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.