Presentation is loading. Please wait.

Presentation is loading. Please wait.

General Linear Model. Y1Y2...YJY1Y2...YJ = X 11 … X 1l … X 1L X 21 … X 2l … X 2L. X J1 … X Jl … X JL β1β2...βLβ1β2...βL + ε1ε2...εJε1ε2...εJ Y = X * β.

Similar presentations


Presentation on theme: "General Linear Model. Y1Y2...YJY1Y2...YJ = X 11 … X 1l … X 1L X 21 … X 2l … X 2L. X J1 … X Jl … X JL β1β2...βLβ1β2...βL + ε1ε2...εJε1ε2...εJ Y = X * β."— Presentation transcript:

1 General Linear Model

2 Y1Y2...YJY1Y2...YJ = X 11 … X 1l … X 1L X 21 … X 2l … X 2L. X J1 … X Jl … X JL β1β2...βLβ1β2...βL + ε1ε2...εJε1ε2...εJ Y = X * β + ε Observed data Design Matrix ParametersResiduals/Error time points time points regressors time points

3 Design Matrix time rest On Off Off On Conditions Use ‘dummy codes’ to label different levels of an experimental factor (eg. On = 1, Off = 0). task 00000000000000 11111111111111

4 Design Matrix Covariates Parametric variation of a single variable (eg. Task difficulty = 1-6) or measured values of a variable (eg. Movement). 544231631652544231631652

5 Design Matrix Constant Variable Models the baseline activity (eg. Always = 1) 11111111...11111111...

6 Design Matrix The design matrix should include everything that might explain the data. Regressors Time

7 General Linear Model Y1Y2...YJY1Y2...YJ = X 11 … X 1l … X 1L X 21 … X 2l … X 2L. X J1 … X Jl … X JL β1β2...βLβ1β2...βL + ε1ε2...εJε1ε2...εJ Y = X * β + ε Observed data Design Matrix ParametersResiduals/Error time points time points regressors time points

8 Error Independent and identically distributed iid

9 Ordinary Least Squares Residual sum of square: The sum of the square difference between actual value and fitted value. e

10 Ordinary Least Squares e   N t t e 1 2 = minimum

11 Ordinary Least Squares x1β1x1β1 x2β2x2β2 y e XβXβ Y = Xβ+e e = Y-Xβ X T e=0 => X T (Y-Xβ)=0 => X T Y-X T Xβ=0 => X T Xβ=X T Y => β=(X T X) -1 X T Y

12 fMRI 12 Y = X * β + ε Observed dataDesign MatrixParametersResiduals/Error

13 Problems with the model

14 The Convolution Model  = Impulses HRF Expected BOLD

15 Convolve stimulus function with a canonical hemodynamic response function (HRF):  HRF Original Convolved HRF

16 Physiological Problems

17

18

19 Noise Low-frequency noise Solution: High pass filtering

20 blue = data black = mean + low-frequency drift green = predicted response, taking into account low-frequency drift red = predicted response, NOT taking into account low-frequency drift discrete cosine transform (DCT) set

21 Assumptions of GLM using OLS All About Error

22 Unbiasedness Expected value of beta = beta

23 Normality

24 Sphericity

25 Homoscedasticity

26 not

27

28 Independence

29 Autoregressive Model y = Xβ + e over time e t = ae t-1 + ε autocovariance function a should = 0

30 Thanks to… Dr. Guillaume Flandin

31 References http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch7.pdf http://www.fil.ion.ucl.ac.uk/spm/course/slides10- vancouver/02_General_Linear_Model.pdf http://www.fil.ion.ucl.ac.uk/spm/course/slides10- vancouver/02_General_Linear_Model.pdf Previous MfD presentations


Download ppt "General Linear Model. Y1Y2...YJY1Y2...YJ = X 11 … X 1l … X 1L X 21 … X 2l … X 2L. X J1 … X Jl … X JL β1β2...βLβ1β2...βL + ε1ε2...εJε1ε2...εJ Y = X * β."

Similar presentations


Ads by Google