Download presentation
Presentation is loading. Please wait.
Published byLeslie Pearson Modified over 9 years ago
1
Chapter 8.1
2
Lesson Objective: NCSCOS 1.01 – Write the equivalent forms of algebraic expressions to solve problems Students will know how to apply the laws of exponents when multiplying monomials.
3
Example 1- Simplify: x 2 * x 3 Remember: x 2 = x * x which can also be written as xx x 2 = x * x and x 3 = x * x * x Therefore x 2 * x 3 = (x*x)*(x*x*x) = xx * xxx = xxxxx There are 5 x’s in the answer Therefore x 2 * x 3 = x 5 Rule: When multiplying monomials you must add the exponents together. X m * x n = x m+n
4
1. 3 3 * 3 4 2. x 3 * x 4 3. x 5 (x 3 ) 4. x 7 (x -2 )
5
1. 3 3 * 3 4 2. x 3 * x 4 3. x 5 (x 3 ) 4. x 7 (x -2 ) 3737 x7x7 x8x8 x5x5
6
Example 2- Simplify (2x 3 )(3x 4 ) Multiply the numbers together first: 2 * 3 = 6 Multiply the variables together second: x 3 * x 4 = x 7 Put the numbers and letters back together for your answer: 6x 7 Rule: When multiplying monomials you multiply the numbers and letter separately
7
1. 3x 3 * 4x 2 2. 5x 4 (2x 3 ) 3. -2x 2 (4x) 4. -7x(-3x 3 )
8
1. 3x 3 * 4x 2 2. 5x 4 (2x 3 ) 3. -2x 2 (4x) 4. -7x(-3x 3 ) 12x 5 10x 7 -8x 3 21x 4
9
Example 3- Simplify (-2x 2 y 3 )(3x 5 y 2 ) Multiply the numbers together first: –2 * 3 = -6 Multiply the x’s separately: x 2 * x 5 = x 7 Multiply the y’s separately: y 3 * y 2 = y 5
11
1. 3x 3 y 2 * 4x 2 y 2 2. 5x 4 y 3 (2x 3 y 4 ) 3. -2x 2 y 2 (4xy) 4. -7xy(-3x 3 y 3 ) 12x 5 y 4 10x 7 y 7 -8x 3 y 3 21x 4 y 4
12
Example 4 Simplify (x 3 ) 2 Remember, (x 3 ) 2 = (x 3 ) * (x 3 ) = xxx * xxx Therefore (x 3 ) 2 = x 6 Rule: When a monomial with an exponent is then raised to an exponent you multiply the exponents together. (X m ) n = x m*n You can always write out x 3 twice and add the exponents
13
1. (x 2 ) 3 2. (x 4 ) 4 3. (x 3 ) 7
14
1. (x 2 ) 3 2. (x 4 ) 4 3. (x 3 ) 7 x6x6 x 16 x 21
15
Example 5 Simplify: 2x 2 (3x 3 ) 2 Remember order of operations, exponents come before multiplication! Also, any number squared means to multiply it by itself Therefore: 2x 2 (3x 3 )(3x 3 ) Multiply the numbers: 2 * 3 * 3 = 18 Multiply the variables: x 2 * x 3 * x 3 = x 8 Put the numbers and letters back together: 18x 8
16
1. 2x 2 (3x 3 ) 2 2. (4x 3 ) 2 (2x 5 ) 3. (3x 4 ) 3 (2x 3 ) 2
17
1. 2x 2 (3x 3 ) 2 2. (4x 3 ) 2 (2x 5 ) 3. (3x 4 ) 3 (2x 3 ) 2 18x 8 108x 18 32x 11
18
1. x 2 * x 3 2. 3x(2x 3 ) 3. -2x 3 (4x 4 ) 4. (x 4 ) 3 5. 2x 3 (3x 4 ) 2
19
1. x 2 * x 3 2. 3x(2x 3 ) 3. -2x 3 (4x 4 ) 4. (x 4 ) 3 5. 2x 3 (3x 4 ) 2 x5x5 6x 4 x 12 -8x 7 18x 11
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.