Presentation is loading. Please wait.

Presentation is loading. Please wait.

Heavy Quarkonium Roman Mizuk, ITEP RAS session at ITEP, 24 Nov 2009.

Similar presentations


Presentation on theme: "Heavy Quarkonium Roman Mizuk, ITEP RAS session at ITEP, 24 Nov 2009."— Presentation transcript:

1 Heavy Quarkonium Roman Mizuk, ITEP RAS session at ITEP, 24 Nov 2009

2 c c n (2S+1) L J n radial quantum number J = S + L P = (–1) L+1 parity C = (–1) L+S charge conj. Charmonium Levels Mass (MeV) J PC (2S+1) L J Open charm threshold  (3770)  (4040)  (4160) cc ’c’c J/   (4415) (potential Models)  c2  c1  c0 hchc hchc ′′

3 Mass (MeV) J PC (2S+1) L J Open charm threshold  (3770)  (4040)  (4160) cc ’c’c J/  X ZY  (4415) Y (4140) Y (potential Models)  c2  c1  c0 hchc hchc ′′ c c n (2S+1) L J n radial quantum number J = S + L P = (–1) L+1 parity C = (–1) L+S charge conj. Charmonium Levels  10 XYZ states

4 XYZ States

5 Outline Charmonium X(3872) 1 - - states from ISR 3940 family Z ± Bottomonium Observation of  b Search for Y b

6 Most of the XYZ from B-factories + BES, CDF, D0 e + e – →  (4S) E cms ~ 10.6 GeV 950 + 530 fb -1 in total

7 6 th anniversary! Phys.Rev.Lett.91 262001, (2003) CP Belle citation count B→X s γ 466 482 334 X(3872)

8 PRL91,262001 (2003) X(3872) was observed by Belle in B + → K + X(3872) ′′ → J/ψ π + π - recent signals X(3872) → J/ψ π + π - X(3872) Confirmed by CDF, D0 and BaBar. pp collisions PRL93,162002(2004) arXiv:0809.1224 PRD 77,111101 (2008) PRL103,152001(2009)

9 Mass & Width  M  = 3871.55  0.20 MeV Γ < 2.3 MeV (90% C.L.) Close to D* 0 D 0 threshold:  m = – 0.25  0.40 MeV.

10 Branching Fractions Br(X  J/   +  - ) > 2.5% at 90%C.L. Absolute Br?  missing mass technique B-B- KK X cc BB  (4S) PRL96,052002(2006) reconstruct only K + momentum in B + c.m.s. Br(B +  X K + ) < 3.2  10 –4 Br(B +  X K + )  Br(X  J/   +  - ) = (8.10  0.92  0.66)  10 -6 (8.4  1.5  0.7)  10 -6

11 Radiative Decays & J/    C X(3872) = + J/ J/  X(3872) → J/   +  -  0 subthreshold production of  +-0+-0 hep-ex/0505037PRL102,132001(2009) Decay modes Br relative to J/  +  - J/   0.15  0.05 J/   0.33  0.12   1.1  0.4 J/   1.0  0.5 ′ ′  J/ J/ 

12 C X(3872) = +  C  +  - = –  1.Isospin (  +  - ) = 1 2.L(  +  - ) = 1  IJ PC of  0 PRL96,102002(2006) hep-ex/0505038 L=1 L=0 M (  +  - )  X(3872) → J/  +  -  X(3872) → J/  0 X(3872) → J/  +  -  M (  +  - ) is well described by  0 →  +  - (CDF: + small interfering  →  +  - ).

13 Angular analyses by Belle and CDF excluded J P =   J PC = 1 ++ or 2 –+ 2 –+ is disfavored by J P = 1 ++ are favorite quantum numbers for X(3872). 0 ++, 0 +-, 0 -+, 1 -+,1 +-, 1 --, 2 ++, 2 --, 2 +-, 3 --, 3 +- Spin & Parity 2 –+ not excluded. PRL98,132002(2007) 0 ++ 1 -- 1 ++ 2 -+ 1.Br(X →  ′ γ) / Br(X → J/  γ) ~ 3  multipole suppression 2.Observation of D* 0 D 0 decay  centrifugal barrier at the threshold

14 PRL 97,162002(2006) B  K D 0 D 0  0 6.4σ X(3875)  X(3872)? B + & B 0  D 0 D *0 K 4.9σ 347fb -1 PRD77,011102(2008) B  K D 0 D *0 605 fb -1 D*→DγD*→Dγ D*→D0π0D*→D0π0 Flatte vs BW similar result: 8.8σ arXiv:0810.0358 avr New Belle vs. BaBar only ~2σ difference 1.4σ 3871.55 ± 0.2

15 X(3872) Experimental Summary J PC = 1 ++ (2 –+ not excluded) Close to D* 0 D 0 threshold:  m = – 0.25  0.40 MeV. Br(X(3872)  J/   0 ) > 2.5% (90% C.L.)  M  = 3871.55  0.20 MeV, Γ < 2.3 MeV (90% C.L.) Decay modes Br relative to J/   0 J/   0 1 J/   1.0  0.5 J/   0.17  0.05   1.1  0.4 D* 0 D 0 ~10

16 3872 J PC = 1 ++   c1 ′  X(3872) is not conventional charmonium. Is there cc assignment for X(3872)? J PC = 2 –+  η c2 Expected to decay into light hadrons rather than into isospin violating mode. 1 ++ 2 -+ Br(  c1 ′ → J/   ) Br(  c1 ′ → J/   +  - ) measure 0.17  0.05 expect  30 ~100 MeV lighter than expected

17 [cq][cq] Tetraquark? Maiani, Polosa, Riquer, Piccini; Ebert, Faustov, Galkin; …  No evidence for X – (3872)  J/   –  0 excludes isovector hypothesis X(3872) – M(J/  π – π 0 ) X(3872) – PRD71,031501,2005 B0B0 B-B- PRD71,014028(2005) 1.Charged partners of X(3872). 2.Two neutral states ∆M = 8  3 MeV, one populate B + decay, the other B 0. Predictions: Charged partner of X(3872)?

18 X(3872) Production in B 0 vs. B +  No evidence for neutral partner of X(3872) in B 0 decays. B 0 →XK 0 s 5.9  M(J/  ) 2.3σ M(J/  ) arXiv:0809.1224 605 fb -1 PRD 77,111101 (2008) [413 fb-1]  M X = (2.7 ± 1.6 ± 0.4) MeV

19 Two overlapping peaks in J/   +  - mode? No evidence for two peaks  m < 3.2 MeV at 90% C.L. Tetraquarks are not supported by any experimental evidence for existence of X(3872) charged or neutral partners. PRL103,152001(2009)

20 D* 0 D 0 molecule? M X = 3871.55  0.20 MeV (M D*0 + M D0 ) = 3871.80  0.35 MeV Weakly bound S-wave D* 0 D 0 system Swanson, Close, Page; Voloshin; Kalashnikova, Nefediev; Braaten; Simonov, Danilkin... Bound state J/  +  - D0D00D0D00 D* 0 D 0 Virtual state J/  +  - D0D00D0D00  m = – 0.25  0.40 MeV a few fm Predict different line shapes for J/  +  - and D* 0 D 0 modes:

21 D 0 D* 0 molecule Kalashnikova, Nefediev arXiv:0907.4901  Analysis of data Bound or virtual?  c1 admixture? ~2  experimental difference reverses conclusion  Present statistics are insufficient to constrain theory? Br(X(3872)  J/   ) Br(X(3872)  J/   ) ~1 Large isospin violation due to 8 MeV difference between D* + D - and D* 0 D 0 thresholds. Br(X(3872)    ) Br(X(3872)  J/   ) ~3 Similar ratio is expected for  c1 decays   c1 admixture? State  c1 admixture Belle databound~ 30% BaBar datavirtual~ 0 Large production rate in B decays and in pp   c1 ?

22 theorists here should agree on the proper form & then experimenters should use it in a proper unbinned fit There are other similar analyses which differ in the fit functions: Braaten, Stapleton Zhang, Meng, Zheng arXiv: 0907.3167 0901.1553

23 Br(B 0 →XK *0 ) Br(X→J/ψπ + π – ) < 3.4  10 –6 at 90% C.L. ~90 events Very weak K*(892) Br(B  J/  K* 0 ) Br(B  J/  K  NR ) ~4 B → X(3872) K  arXiv:0809.1224 605 fb -1 X(3872) sideband non-resonant Kπ Mass(Kπ) Br(B 0 →X(K + π – ) non_res ) Br(X→J/ψπ + π – ) = (8.1±2.0 +1.1 –1.4 )  10 –6

24 DD* molecular models for the X(3872) attribute its production & decays  charmonium to an admixture of  c1 ′ in the wave fcn. But B  K  X(3872) is very different from B  K  charmonium. BaBar PRD 71 032005 Belle arXiv 0809.0124 Belle PRD 74 072004 K  ′ K  J/  K  c1 K  c Belle F.Fang Thesis K  X 3872 M(K  )

25 e + e – → 1 –– final states via ISR

26 c c e-e-  s=E 2 cm -2E  E cm e+e+ e–e– e+e+ 1 – – ISR physics at B-factories  Continuous ISR spectrum: access to the whole  s interval   em suppression compensated by huge luminosity  comparable sensitivity to energy scanning (CLEOc, BES) Initial State Radiation

27 e + e – → γ ISR J/  +  – Y(4260), Y(4008)? PRL 95,142001(2005) 233 fb -1 PRD74, 091104R (2006) 13.3 fb -1 5.4σ PRL 96, 162003 (2006) 5.1σ 11σ  (2S) 8σ8σ PRL 99, 182004 (2007) 550 fb -1 Y(4260) Y(4008) 7.4  Y(4260)

28 One or two states in e + e – → γ ISR J/  +  – ? PRL 99, 182004 (2007) 550 fb -1 454 fb -1 preliminary < 0.7 90% CL 7.5±0.9±0.8 Γ ee  Br(J/  +  – ), eV Solution1 Y(4008) Solution2 Solution1 Y(4260) Solution2 Y(4008) ? Y(4008) 7.4  arXiv:0808.1543 Y(4260)

29 e + e – → γ ISR  +  – Y(4325) 8σ Y(4660) 5.8  670 fb -1 PRL 99, 142002 (2007)PRL 98, 212001 (2007) Y(4660) ? Y(4325) 298 fb -1 Y(4360) Y(4660) 6.1σ PRD78,014032(2008) Combined fit

30 Only 1 unassigned 1 – – cc level Y(4660) Y(4325) Y(4260) Y(4008)

31 y (3770) Durham Data Base Y( 4008) y (4040) y (4160) Y( 4260) Y( 4325) y (4415) Y (4660) ψ (3770) Y( 4008) ψ (4040) ψ(4160) Y( 4260) Y( 4360) ψ (4415) Y (4660) No evidence for Y 1 -- → hadrons X.H. Mo et al, PL B640, 182 (2006)  (  → J/  +  - ) = 0.104 ± 0.004 MeV  (  → J/  +  - ) = 0.044 ± 0.008 MeV Much larger than measured charmonium widths:   (Y(4260) → J/  +  - ) > 0.508 MeV @ 90% CL R(s) = – R uds  (e + e – →hadrons)  (e + e – →μ + μ – )

32  (e + e – →open charm) D*D*D*D* DD * ψ(4040) ψ(4160) Y(4008) ψ(4415) Y(4660) Y(4260) Y(4360) DD DDπ Λc+Λc–Λc+Λc– ? PRD77,011103(2008) PRL100,062001(2008) PRL98, 092001 (2007) PRL101,172001(2008) DD * π arXiv:0908.0231 0908.0231[hep-ex] DD*π Y(4260) ψ(4415) M(DD*  ) Y(4260) is DD 1 molecule/ccg hybrid? DD 1 [→DD*π] decay should dominate but no signal found Y(4008), Y(4260), Y(4360), Y(4660) don’t match peaks in D(*)D(*) Xsection Y(4660) mass is close to Λ c + Λ c – peak

33 ICHEP2008 Galina Pakhlova, ITEP no peak-like structure = X(4630) = Y(4660) = charmonium state 5 3 S 1 or 4 3 D 1 J.Segovia, A.M.Yasser, D.R.Entem, F.Fernandez Charmonium state 6 3 S 1 B.Q.Li and K.T.Chao Threshold effect E.Beveren, G.Rupp Y(4660) =ψ(2S)f 0 (980) bound state F.K.Gou,C.Hanhart, S.Krewald,U.G.Meissner Point-like baryons R.B.Baldini, S.Pacetti, A.Zallo X(4630) = Y(4660) D.V.Bugg = X(4630) = Y(4660) = tetraquark D.Ebert, R.N.Fausov, V.O. Galkin X(4630) ≡ Y(4660)? J PC =1 – – e + e – → Λ c + Λ c – γ ISR Phys.Rev.Lett.101,172001(2008) Interpretations for X(4630) dibaryon threshold effect ? like in B → pΛπ, J/ψ → γpp

34 DDDD * D*D*D*D* DDπ DD * π Λ + c Λ – c Sum of all exclusive contributions Only small room for unaccounted contributions Charm strange final states Limited inclusive data above 4.5 GeV Charm baryons final states

35 States near 3940 MeV

36 M = 3942 +7 ± 6 MeV  tot = 37 +26 ±12 MeV Nsig = 52 +24 ± 11 evts -6 -15 -16 PRL 100, 202001 e + e -  J/  DD* M(DD*) M≈3940 ± 11 MeV  ≈ 92 ± 24 MeV PRL94, 182002 M(  J/  ) B  K  J/  M = 3929±5±2 MeV  tot = 29±10±2 MeV Nsig = 64 ± 18 evts   DD M(DD) PRL 96, 082003 X(3940)Y(3940) Z(3930) not seen in  J/  not seen in DD*Probably the  c2 ’ probably different BaBar: PRL 101, 082001 M≈3914 ± 5 MeV  ≈ 33 ± 10 MeV

37 New peak in    J/  X M: 3914  3  2 MeV,  : 23  10 +2 -8 MeV, N res = 55  14 +2 -14 events Signif. = 7.7 , preliminary Background only fit

38 The 4 states near 3940 X(3940) Y(3940) Belle Z(3930) Mass(GeV) This X(3915) Width(GeV) Range:  (  (stat.)  (sys.)) Good overlap with BaBar “Y(3940)” values

39 cc  c0 X(3940) cc Only J P =0 - or 0 + charmonium is produced in pair with J/ . Radial excitations are not suppressed e + e - → J/  + cc Missing mass technique M = 3942 ±6 MeV  tot =37 ±12 MeV +7 − 6 +26 − 15 X(3940) → DD * M= 4156  15 MeV  tot = 139  21MeV +25 −20 +111 −61 X(4160) → D * D * M(DD*) M(D*D*) Exclusive reconstruction of cc Double charmonium production

40 cc assignments for X(3915), X(3940) & X(4160)? 3940MeV 4160MeV Y(3915) =  co ’?   (  J/  ) too large? X(3940) =  c ”?  mass too low? X(4160) =  c ’’’?  mass way too low? c”c”  c ’’’ 3915MeV  c0 ’

41 States decaying into J/ 

42 PRL102, 242002 (2009) D* s D* s molecule? [cscs] tetraquark? M = 4143.0 ± 2.9 ± 1.2 MeV  = 11.7 +8.3 -5.0 ± 3.7 MeV Y(4140)  J/   by CDF B +  Y(4140) K + 14±5 ev >3.8 Preliminary Br(B + →Y(4140)K + ) Br(Y→J/  ) CDF (9.0 ± 3.4 ± 2.9)  10 -6 Belle <6  10 -6 at 90% CL

43 preliminary M(X(4350))=4350.6 +4.6 -5.1 ± 0.7 MeV Γ=13.3 +17.9 -9.1 ± 4.1 MeV J P =0 + : Γ γγ Br(X(4350)) →  J/  ) =6.4 +3.1 -2.3 ± 1.1 eV J P =2 + : Γ γγ Br(X(4350)) →  J/  ) =1.5 +0.7 -0.5 ± 0.3 eV No Y(4140) Another structure: Study of    J/  825fb -1 8.8 +4.2 -3.2 ev 3.2-3.9 

44 u c d c Z(4430) + and Z 1 (4050) + & Z 2 (4250) + Smoking guns for charmed exotics:

45 K*(1430) → K +  - ?? K*(892) → K +  - B → K   ′ M 2 (K +  - ) M2(′+)M2(′+)

46 The Z(4430) ±   ±  ’ peak M(  ±  ’ ) GeV BK +’BK +’ Z(4430)  M (   ) GeV evts near M(  ’)  4430 MeV M 2 (  ±  ’ ) GeV 2 M 2 (   ) GeV 2  “K* Veto”

47 Shows up in all data subsamples

48 But…

49 BaBar doesn’t see a significant Z(4430) + “For the fit … equivalent to the Belle analysis…we obtain mass & width values that are consistent with theirs,… but only ~1.9  from zero; fixing mass and width increases this to only ~3.1 .” Belle PRL: (4.1 ± 1.0 ± 1.4)x10 -5

50 Reanalysis of Belle’s B  K  ’ data using Dalitz Plot techniques

51 2-body isobar model for  K  ’  KZ + K2*’K2*’ K*  ’ K  ’ Our default model   ′ K*(890)  ′ K*(1410)  ′ K 0 *(1430)  ′ K 2 *(1430)  ′ K*(1680)  ′ K Z +

52 Results with no KZ + term        fit CL=0.1%  1 2 3 4 5 12 3 45 A B C AB C 

53 Results with a KZ + term   fit CL=36% 1 2 3 4 5 A B C 12 3 45 A B C

54 Compare with PRL results Signif: 6.4  Published results Mass & significance similar, width & errors are larger With Z(4430) Without Z(4430) Belle: = (3.2 +1.8+9.6 )x10 -5 0.9-1.6 BaBar: No big contradiction K* veto applied

55 Systematics Z(4430) + significance

56 The Z 1 (4050) + & Z 2 (4250) +   +  c1 peaks PRD 78,072004 (2008)

57 Dalitz analysis of B 0  K -  +  c1 K*(890) K*(1400)’s K*(1680) K 3 *(1780) M (J  ) GeV  E GeV ??? 

58 B  K  c1 Dalitz-plot analyses  KZ + K 2 *  c1 K*  c1 K  c1 Default Model   c1 K*(890)  c1 K*(1410)  c1 K 0 *(1430)  c1 K 2 *(1430)  c1 K*(1680)  c1 K 3 *(1780)  c1 KZ +

59 Fit model: all low-lying K*’s (no Z + state) ab cd ef g abcd g f e C.L.=3  10 -10

60 Fit model: all K*’s + one Z + state ab cd ef g abcd g f e C.L.=0.1%

61 Are there two? abcd ? ? ? ?

62 Fit model: all K*’s + two Z + states ab cd ef g abcd g f e C.L.=42%

63 Two Z-states give best fit Projection with K* veto

64 Systematics of B 0 → K - π +  c1 fit Significance of Z 1 (4050) + and Z 2 (4250) + is high. Fit assumes J Z1 =0, J Z2 =0; no signif. improvement for J Z1 =1 &/or J Z2 =1. M=1.04 GeV; G=0.26 GeV

65 Bottomonium

66 Discovery of η b PRL 100, 06200 (2008) non-peaking background subtracted γ ISR χ bJ Y(3S)→γη b 10σ 120M Y(3S) 100M Y(2S) χ bJ γ ISR arXiv:0903.1124 Y(2S)→γη b non-peaking background subtracted ηbηb 3.5σ M(η b ) = (9390.4 ± 3.1) MeV/c 2 M(Υ(1S)) - M(η b ) = 69.9 ± 3.1 MeV/c 2 Theory ~ 60 MeV/c 2 Decay modes of η b are not known Search for Y(3S), Y(2S)→γη b with e + e  → Υ(3S), Υ(2S) Monochromatic line in photon energy spectrum Problem: peaking backgrounds Υ(nS) → χ bJ γ soft, χ bJ → Υ(1S) γ hard e + e  → γ ISR Υ(1S)

67 Y(5S) & Y(6S) arXiv:0810.3829 7.9fb  1 arXiv:0809.4120 3.9fb  1 Both inclusive and exclusive dipion cross-sections are inconsistent with PDG Y(5S) &Y(6S) parameters Energy scan above Υ(4S) to search for counterpart of Y(4260) in bottomonium sector: study cross section of e + e  → Υ(nS)π + π , (n=1, 2, 3) Fit to inclusive cross section e + e  →hadrons coherent Y(5S) +Y(6S) + continuum  (5S) ≠ Υ b at  3  level

68 Summary X(3872): at D* 0 D 0 threshold, narrow, isospin violating mode is not suppressed. 1-- family: Y(4008), Y(4260), Y(4360), Y(4660) – no room in charmonium table, big  (Y→  +  - ), no decays to hybrid favorite D**D 3940 family: X(3940), Y(3940), X(4160) – no clear charmonium assignment. Z ± family: Z(4430) + confirmed with Dalitz analysis; observation of Z 1 (4050) +, Z 2 (4250) + →  c1  +. Y b : is not equal to  (5S) at 3  level.  b : observed. or Y(4325) or Y(3915)

69 Summary

70 In contrast  ”(3770)  only above-open-charm threshold state with an established  +  -J/  mode Discovered 1977 (Lead Glass wall) 2003 1 st evidence for  ”   +  -J/  (BESII) 2006  ”   +  -J/  established (CLEOc) Bf=(1.9+-0.3)x10 -3 ;  (  +  -J/  )  50keV ~30 yrs later PRL96, 082004 (2006) PRB 605, 63 (2005) Rapidis et al PRL39, 526 (1977) ~230 evts ~25 evts 3 rd generation expt

71 Back-up

72 In  (4S) decays B are produced almost at rest. ∆E =  E i - E CM /2  Signal peaks at 0. M bc = { (E CM /2) 2 - (  P i ) 2 } 1/2  Signal peaks at B mass (5.28GeV). ∆E, GeV M bc, GeV Reconstruction of B decays B 0  J/  K S

73 Improvement to M(D 0 )? Best single measurement from CLEOc: M D0 = 1864.847 ± 0.150 (stat) ± 0.095 (syst) MeV CLEOc uses invariant mass: large  M D0 dominates the error small  0 not a big contrib. & only uses D 0  K S  (  K + K - ) decays: well known ±2x16keV ±22keV  0.1 M D0 measured Bf  0.002 319 evts stat error dominates

74 M(D 0 ) measurement @ BESIII Use “beam constrained mass @  ” : need to know E beam precisely Use backscattered laser beam at the unused X-ing region to measure E beam (&M D0 ) to better than ±100 keV Approved, funded,& under construction

75 Interpretation of Y states  Y(4360) & Y(4660) are conventional charmonium with shifted masses  Y(4360) = 3 3 D 1, Y(4660) = 5 3 S 1 G.J Ding, J.J.Zhu, M.L.Yan, Phys.Rev.D77:014033 (2008) A.M.Badalyan, B.L.G.Bakker, I.V.Danilkin, Phys.Atom.Nucl.72:638-646,(2009 )  4 3 S 1 ≠ ψ(4415) = 4 3 D 1 (4661); Y(4360)=4 3 S 1 (4389), Y(4660)=5 3 S 1 (4614) or 4 3 D 1 (4661) J.Segovia, A.M.Yasser, D.R.Entem, F.Fernandez Phys.Rev.D78:114033,(2008).  Charmonium hybrids  The lightest hybrid is expected by LQCD around 4.4 GeV  The dominant decays Y(4260)→D (*) D (*) π, via virtual D ** Zhu S.L.; Close F.E.; Kou E. and Pene O.  Hadro-charmonium  Specific charmonium state “coated” by excited light-hadron matter S.Dubinskiy, M.B.Voloshin, A.Gorsky  Multiquark states  [cq][cq] tetraquark Maiani L., Riquer V., Piccinini F., Polosa A.D.  DD 1 or D * D 0 molecules Swanson E.; Rosner J.L., Close F.E.  S-wave charm meson thresholds Lui X.

76 Formalism B 0 →  c1 K +  -,  c1 → J/ , J/  →  +  -  described by 6 variables: M(  c1  ), M(K  ),  (  c1 ),  (  c1 ),  (J/  ),  (J/  ) Justification: efficiency is ~constant in  (  c1 ),  (J/  )  after integration over  (  c1 ),  (J/  ) interference terms drop out. Efficiency vs.  (  c1 )Efficiency vs.  (J/  ) different parts of Dalitz plot range = (0, 2  )  perform Dalitz analysis w/o considering angular variables,  assume no interference between different  c1 helicity states.

77 Formalism (2) Amplitude , K*(892), K 0 (1430), K 2 (1430), K*(1680), K* 3 (1780), Z + →  +  c1 Fit function Signal component  c1 helicity Binned likelihood fit (see next slide for details on amplitude of Z + )  E s.b. Efficiency B meson and R resonance decay form-factorsAngular part

78 Amplitude of Z  c1 rest frame pKpK pp  c1 spin quantization axis in B →  c1 K*(→K  ) decays  c1 spin quantization axis in B → Z(→  c1  ) K decays  cos  Transformation of basis vectors The same relation for amplitudes

79 Comparison with BaBar BaBar paper: Belle and BaBar data are statistically consistent.  peak in M(π + ψ) is present also in BaBar data with similar to Belle shape: BaBarBelle

80 Comparison with BaBar BaBar paper: Belle and BaBar data are statistically consistent.  peak in M(π + ψ) is present also in BaBar data with similar to Belle shape: BaBarBelle Why different significances are reported? (6.4σ Belle vs. 1.9–3.1σ BaBar)  assumption about background is crucial. BaBar method is a simplification of amplitude analysis with a lot of (unphysical?) freedom in description of background. Dalitz analysis is preferable. Result of Dalitz fit scaled down by 1.18 to account for smaller statistics @ BaBar.

81 Z(4430) + signal in B  K  ’ persists with a more complete amplitude analysis. –signif. ~6 , product Bf ~3x10 -5 (with large errors) No significant contradiction with the BaBar results –signif. = 2~3 , Product Bf<3x10 -5 Z 1 (4050) & Z 2 (4250), seen in B  K  c1, have similar properties (i.e. M &  ) & product Bf’s –signif. (at least one Z + )>10  ; (two Z + states)>5  Summary on Z ±


Download ppt "Heavy Quarkonium Roman Mizuk, ITEP RAS session at ITEP, 24 Nov 2009."

Similar presentations


Ads by Google