Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dick Bond Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ lnk) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc.

Similar presentations


Presentation on theme: "Dick Bond Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ lnk) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc."— Presentation transcript:

1 Dick Bond Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ lnk) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc -1 LSS) ~ 10+ parameters? Bond, Contaldi, Kofman, Vaudrevange 07 V(  ) Cosmic Probes now & then CMBpol (T+E,B modes of polarization), LSS Inflation Histories & their Cosmic Probes, now & then Inflation Now 1+ w (a) goes to 2 (1+q)/3 ~1 good e-fold. only ~2params Zhiqi Huang, Bond & Kofman 07 Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Ly  Cosmic Probes Then JDEM-SN + DUNE-WL + Planck +ACT/SPT… V(  )?  ~0 to 2 to 3/2 to ~.4 now, on its way to 0?

2 CMBology Foregrounds CBI, Planck Foregrounds CBI, Planck Secondary Anisotropies (CBI,ACT) (tSZ, kSZ, reion) Secondary Anisotropies (CBI,ACT) (tSZ, kSZ, reion) Non-Gaussianity (Boom, CBI, WMAP) Non-Gaussianity (Boom, CBI, WMAP) Polarization of the CMB, Gravity Waves (CBI, Boom, Planck, Spider) Polarization of the CMB, Gravity Waves (CBI, Boom, Planck, Spider) Dark Energy Histories (& CFHTLS-SN+WL) Dark Energy Histories (& CFHTLS-SN+WL) subdominant phenomena (isocurvature, BSI) subdominant phenomena (isocurvature, BSI) Inflation Histories (CMBall+LSS) Inflation Histories (CMBall+LSS) Probing the linear & nonlinear cosmic web wide open braking approach to preheating roulette inflation potential T=  +i 

3 2004 2005 2006 2007 2008 2009 Polarbear (300 bolometers) @Cal SZA (Interferometer) @Cal APEX (~400 bolometers) @Chile SPT (1000 bolometers) @South Pole ACT (3000 bolometers) @Chile Planck 08.8 (84 bolometers) HEMTs @L2 Bpol @L2 ALMA (Interferometer) @Chile (12000 bolometers) SCUBA2 Quiet1 Quiet2 Bicep @SP QUaD @SP CBI pol to Apr’05 @Chile Acbar to Jan’06, 07f @SP WMAP @L2 to 2009-2013? 2017 (1000 HEMTs) @Chile Spider Clover @Chile Boom03 @LDB DASI @SP CAPMAP AMI GBT 2312 bolometer @LDB JCMT @Hawaii CBI2 to early’08 EBEX @LDB LMT @Mexico LHC

4 CMB/LSS Phenomenology CITA/CIfAR here Bond Contaldi Lewis Sievers Pen McDonald Majumdar Nolta Iliev Kofman Vaudrevange Huang UofT here Netterfield Crill Carlberg Yee & Exptal/Analysis/Phenomenology Teams here & there Boomerang03 (98) Cosmic Background Imager1/2 Acbar07 WMAP (Nolta, Dore) CFHTLS – WeakLens CFHTLS - Supernovae RCS2 (RCS1; Virmos-Descart) CITA/CIfAR there Mivelle-Deschenes (IAS) Pogosyan (U of Alberta) Myers (NRAO) Holder (McGill) Hoekstra (UVictoria) van Waerbeke (UBC) Parameter data now: CMBall_pol SDSS P(k), BAO, 2dF P(k) Weak lens (Virmos/RCS1, CFHTLS, RCS2) ~100sqdeg Benjamin etal. aph/0703570v1 Lya forest (SDSS) SN1a “gold”(192,15 z>1) CFHTLS then: ACT (SZ), Spider, Planck, 21(1+z)cm GMRT,SKA Dalal Dore Kesden MacTavish Pfrommer Shirokov Dalal Dore Kesden MacTavish Pfrommer Shirokov Prokushkin

5 WMAP3 sees 3 rd pk, B03 sees 4 th ‘Shallow’ scan, 75 hours, f sky =3.0%, large scale TT ‘Shallow’ scan, 75 hours, f sky =3.0%, large scale TT ‘deep’ scan, 125 hours, fsky=0.28% 115sq deg, ~ Planck2yr ‘deep’ scan, 125 hours, fsky=0.28% 115sq deg, ~ Planck2yr B03+B98 final soon

6 CBIpol 2.5 yrs EE, ~ best so far, ~QuaD TEBB TT

7 CBI excess 04, 2.5 yrs cf. CBI excess Dec07, 5 yrs Jan08: Full ACBAR data ~ 4X includes 2005 observations

8 Current high L state November 07 Current high L state November 07 CBI sees 4 th 5 th pk CBI excess 07 WMAP3 sees 3 rd pk, B03 sees 4 th

9 ACT@5170m CBI2@5040m why Atacama? driest desert in the world. thus: cbi, toco, apex, asti, act, alma, quiet, clover

10 forecast Planck2.5 100&143 Spider10d 95&150 Synchrotron pol’n Dust pol’n are higher in B Foreground Template removals from multi- frequency data is crucial

11 PRIMARY END @ 2012? CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

12 INFLATION THEN

13 Standard Parameters of Cosmic Structure Formation What is the average curvature of the universe (we can see)? Density of Baryonic Matter Density of non- interacting Dark Matter Cosmological Constant Spectral index of primordial scalar (curvature) perturbations Spectral index of primordial tensor (Gravity Wave) perturbations Scalar Amplitude Tensor Amplitude Period of inflationary expansion, quantum noise  metric perturbations Compton Depth to Last Scattering Surface When did stars reionize the universe? r < 0.6 or < 0.28 95% CL

14 n s =.958 +-.015 (+-.005 Planck1).93 +-.03 @0.05/Mpc run&tensor r=A t / A s < 0.28 95% CL (+-.03) <.36 CMB+LSS run&tensor <.05 ln r prior! dn s /dln k =-.038 +-.024 (+-.005) CMB+LSS run&tensor prior change? A s = 22 +- 2 x 10 -10 The Parameters of Cosmic Structure Formation Cosmic Numerology: aph/0611198 – our Acbar paper on the basic 7+; bckv07 WMAP3modified+B03+CBIcombined+Acbar06+LSS (SDSS+2dF) + DASI (incl polarization and CMB weak lensing and tSZ)  b h 2 =.0226 +-.0006  c h 2 =.114 +-.005   =.73 +.02 -.03 h =.707 +-.021  m  =.27 +.03 -.02 z reh = 11.4 +- 2.5 1+w = 0.02 +/- 0.05 ‘phantom DE’ allowed?!

15 New Parameters of Cosmic Structure Formation =1+q, the deceleration parameter history order N Chebyshev expansion, N-1 parameters (e.g. nodal point values) Hubble parameter at inflation at a pivot pt Fluctuations are from stochastic kicks ~ H/2  superposed on the downward drift at  lnk=1. Potential trajectory from HJ (SB 90,91):

16 Constraining Inflaton Acceleration Trajectories Bond, Contaldi, Kofman & Vaudrevange 07 “path integral” over probability landscape of theory and data, with mode- function expansions of the paths truncated by an imposed smoothness (Chebyshev-filter) criterion [data cannot constrain high ln k frequencies] P(trajectory|data, th) ~ P(lnH p,  k |data, th) ~ P(data| lnH p,  k ) P(lnH p,  k | th) / P(data|th) Likelihood theory prior / evidence “path integral” over probability landscape of theory and data, with mode- function expansions of the paths truncated by an imposed smoothness (Chebyshev-filter) criterion [data cannot constrain high ln k frequencies] P(trajectory|data, th) ~ P(lnH p,  k |data, th) ~ P(data| lnH p,  k ) P(lnH p,  k | th) / P(data|th) Likelihood theory prior / evidence Data: CMBall (WMAP3,B03,CBI, ACBAR, DASI,VSA,MAXIMA) + LSS (2dF, SDSS,  8[lens]) Data: CMBall (WMAP3,B03,CBI, ACBAR, DASI,VSA,MAXIMA) + LSS (2dF, SDSS,  8[lens]) Theory prior uniform in lnH p,  k (equal a-prior probability hypothesis) Nodal points cf. Chebyshev coefficients (linear combinations) uniform in / log in / monotonic in  k The theory prior matters a lot for current data. Not quite as much for a Bpol future. We have tried many theory priors Theory prior uniform in lnH p,  k (equal a-prior probability hypothesis) Nodal points cf. Chebyshev coefficients (linear combinations) uniform in / log in / monotonic in  k The theory prior matters a lot for current data. Not quite as much for a Bpol future. We have tried many theory priors

17 1980 2000 1990 -inflation Old Inflation New Inflation Chaotic inflation Double Inflation Extended inflation DBI inflation Super-natural Inflation Hybrid inflation SUGRA inflation SUSY F-term inflation SUSY D-term inflation SUSY P-term inflation Brane inflation K-flation N-flation Warped Brane inflation inflation Power-law inflation Tachyon inflation Racetrack inflation Assisted inflation Roulette inflation Kahler moduli/axion Natural pNGB inflation Old view: Theory prior = delta function of THE correct one and only theory Radical BSI inflation variable M P inflation

18 1980 2000 1990 Chaotic inflation Double Inflation Extended inflation Power-law inflation Roulette inflation Kahler moduli/axion Natural pNGB inflation Radical BSI inflation variable M P inflation

19 1980 2000 1990 Power-law inflation Uniform acceleration V/ M P 4 ~  exp       M P  -1/2 1-n s  n t  r  r  n s  r  n s  Uniform acceleration V/ M P 4 ~  exp       M P  -1/2 1-n s  n t  r  r  n s  r  n s  M P -2 = 8  G

20 1980 2000 1990 Chaotic inflation V/ M P 4 ~  2  M P  -1/2  (k)  N I (k) + /3     n s -1  +1  N I (k) - /6  n t  N I (k) - /6  for  N I  =1, r    n s   n t    =2, r   n s  n t    V/ M P 4 ~  2  M P  -1/2  (k)  N I (k) + /3     n s -1  +1  N I (k) - /6  n t  N I (k) - /6  for  N I  =1, r    n s   n t    =2, r   n s  n t   

21 1980 2000 1992Natural pNGB inflation V/ M P 4 ~  red 4  sin 2  f red  -1/2  n s  f red -2    1-n s   exp [  1-n s   N I (k) ] (1+  1-n s   -1  exponentially suppressed; higher r if lower  N I & 1-n s to match n s .96, f red  ~ 5, r~0.032 to match n s .97, f red  ~ 5.8, r ~0.048,  V/ M P 4 ~  red 4  sin 2  f red  -1/2  n s  f red -2    1-n s   exp [  1-n s   N I (k) ] (1+  1-n s   -1  exponentially suppressed; higher r if lower  N I & 1-n s to match n s .96, f red  ~ 5, r~0.032 to match n s .97, f red  ~ 5.8, r ~0.048,  abffo92

22 Old view: Theory prior = delta function of THE correct one and only theory are New view: Theory prior = probability distribution on an energy landscape whose features are at best only glimpsed, huge number of potential minima, inflation the late stage flow in the low energy structure toward these minima. Critical role of collective coordinates in the low energy landscape: moduli fields, sizes and shapes of geometrical structures such as holes in a dynamical extra-dimensional (6D) manifold approaching stabilization moving brane & antibrane separations (D3,D7) are New view: Theory prior = probability distribution on an energy landscape whose features are at best only glimpsed, huge number of potential minima, inflation the late stage flow in the low energy structure toward these minima. Critical role of collective coordinates in the low energy landscape: moduli fields, sizes and shapes of geometrical structures such as holes in a dynamical extra-dimensional (6D) manifold approaching stabilization moving brane & antibrane separations (D3,D7) Theory prior ~ probability of trajectories given potential parameters of the collective coordinates X probability of the potential parameters X probability of initial conditions

23 1980 2006 1990 Roulette inflation Kahler moduli/axion typical r ~ 10 -10    A s & n s ~0.97 OK but by statistical selection! running dn s /dlnk exists, but small because small observable window typical r ~ 10 -10    A s & n s ~0.97 OK but by statistical selection! running dn s /dlnk exists, but small because small observable window Roulette: which minimum for the rolling ball depends upon the throw; but which roulette wheel we play is chance too. The ‘house’ does not just play dice with the world. focus on “4-cycle Kahler moduli in large volume limit of IIB flux compactifications” Balasubramanian, Berglund 2004, + Conlon, Quevedo 2005, + Suruliz 2005 Real & imaginary parts are both important BKVP06

24 energy scale of inflation & r V/ M P 4 ~ P s r (1-  3) 3/2 V ~ (10 16 Gev ) 4 r/0.1 (1-  3) energy scale of inflation & r V/ M P 4 ~ P s r (1-  3) 3/2 V ~ (10 16 Gev ) 4 r/0.1 (1-  3) roulette inflation examples V ~ ( few x 10 13 Gev ) 4 H/ M P ~ 10 -5 (r/.1) 1/2 inflation energy scale cf. the gravitino mass (Kallosh & Linde 07) if a KKLT/largeV CY -like generation mechanism 10 13 Gev (r/.01) 1/2 ~ H < m 3/2 cf. ~ Tev

25 Planck1yr simulation: input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. r in  s order 5 uniform prior  s order 5 log prior GW/scalar curvature: current from CMB+LSS : r < 0.6 or < 0.25 (.28) 95%; good shot at 0.02 95% CL with BB polarization (+-.02 PL2.5+Spider),.01 target BUT foregrounds/systematics?? But r-spectrum. But low energy inflation

26 Planck1 simulation : input LCDM (Acbar)+run+uniform tensor P s P t reconstructed cf. input of LCDM with scalar running & r=0.1  s order 5 uniform prior  s order 5 log prior lnP s lnP t (nodal 5 and 5)

27 http://www.astro.caltech.edu/~lgg/spider_front.htm No Tensor SPIDER Tensor Signal Tensor Simulation of large scale polarization signal

28 B-pol simulation: ~10K detectors > 100x Planck input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. r in  s order 5 uniform prior  s order 5 log prior a very stringent test of the  -trajectory methods: A+ also input trajectory is recovered

29 INFLATION NOW

30 Inflation Now 1+ w (a)=  s f(a/a  eq ;a s /a  eq ;  s ) to  a  x3/2 = 3 (1+q)/2 ~1 good e-fold. only ~2 eigenparams Zhiqi Huang, Bond & Kofman07: 3-param formula accurately fits slow-to-moderate roll & even wild rising baroque late-inflaton trajectories, as well as thawing & freezing trajectories Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Ly   s = (dlnV/d  ) 2 /4 = late-inflaton (potential gradient) 2  = 0.0+-0.25 now; weak a s 2.3) now  s to +-0.07 then Planck1+JDEM SN+DUNE WL, weak a s 3.7) 3 rd param  s (~d  s /dlna) ill-determined now & then cannot reconstruct the quintessence potential, just the slope  s & hubble drag info (late-inflaton mass is < Planck mass, but not by a lot) Cosmic Probes Then JDEM-SN + DUNE-WL + Planck1

31 w(a)=w 0 +w a (1-a) models 45 low-z SN + ESSENCE SN + SNLS 1st year SN + Riess high-z SN, 192 “gold”SN all fit with MLCS illustrates the near-degeneracies of the contour plot

32 Measuring the 3 parameters with current data Use 3-parameter formula over 0 4)=w h (irrelevant parameter unless large). a s <0.3

33 Forecast: JDEM-SN (2500 hi-z + 500 low-z) + DUNE-WL (50% sky, gals @z = 0.1-1.1, 35/min 2 ) + Planck1yr  s =0.02 +0.07 -0.06 a s <0.21 (95%CL) Beyond Einstein panel: LISA+JDEM ESA

34 End


Download ppt "Dick Bond Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ lnk) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc."

Similar presentations


Ads by Google