Download presentation

Presentation is loading. Please wait.

1
**Translations, Reflections, and Rotations**

Course 2 8-10 Translations, Reflections, and Rotations Do Now 1. Subtract 3 from the x-coordinate and 2 from the y-coordinate in (7, –4). (4, –6) 2. Multiply each coordinate by 3 in (4, 9). (12, 27) 3. Subtract 4 from the x-coordinate and add 3 to the to the y-coordinate in (–2, –1). (–6, 2) Hwk: p 77 #1-4

2
**EQ: How do I recognize, describe, and show transformations?**

GEORGIA PERFORMANCE STANDARDS: M7G2.a Demonstrate understanding of translations, dilations, rotations, reflections, and relate symmetry to appropriate transformations; M7G2.b Given a figure in the coordinate plane, determine the coordinates resulting from a translation, dilation, rotation, or reflection

3
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Vocabulary transformation image translation reflection line of reflection rotation

4
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Vocabulary Transformation- changes the position or orientation of a figure Image- resulting figure Translation- slides without turning Reflection- flips across a line of reflection line of reflection- x or y axis Rotation- turns around a fixed point Dilation- make bigger or smaller

5
**Translations, Reflections, and Rotations**

Course 2 8-10 Translations, Reflections, and Rotations In mathematics, a transformation changes the position or orientation of a figure. The resulting figure is the image of the original. Images resulting from the transformations described in the next slides are congruent to the original figures.

6
**Types of Transformations**

Course 2 8-10 Translations, Reflections, and Rotations Types of Transformations Translation The figure slides along a straight line without turning.

7
**Types of Transformations**

Course 2 8-10 Translations, Reflections, and Rotations Types of Transformations Reflection The figure flips across a line of reflection, creating a mirror image.

8
**Types of Transformations**

Course 2 8-10 Translations, Reflections, and Rotations Types of Transformations Rotation The figure turns around a fixed point.

9
**Additional Example 1: Identifying Types of Transformations**

Course 2 8-10 Translations, Reflections, and Rotations Additional Example 1: Identifying Types of Transformations Identify each type of transformation. A. B. The figure flips across the y-axis. The figure slides along a straight line. It is a reflection. It is a translation.

10
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here The point that a figure rotates around may be on the figure or away from the figure. Helpful Hint

11
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Check It Out: Example 1 Identify each type of transformation. A B. x y x y 4 4 2 2 –4 –2 2 4 –4 –2 2 4 –2 –2 –4 –4 The figure slides along a straight line. The figure turns around a fixed point. It is a translation. It is a rotation.

12
**Additional Example 2: Graphing Transformations on a Coordinate Plane**

Course 2 8-10 Translations, Reflections, and Rotations Additional Example 2: Graphing Transformations on a Coordinate Plane Graph the translation of quadrilateral ABCD 4 units left and 2 units down. Each vertex is moved 4 units left and 2 units down.

13
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Reading Math A’ is read “A prime” and is used to represent the point on the image that corresponds to point A of the original figure

14
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Check It Out: Example 2 Translate quadrilateral ABCD 5 units left and 3 units down. x y B A 4 D’ C’ B’ A’ Each vertex is moved five units left and three units down. 2 C –4 –2 D 2 4 –2 –4

15
**Additional Example 3: Graphing Reflections on a Coordinate Plane**

Course 2 8-10 Translations, Reflections, and Rotations Additional Example 3: Graphing Reflections on a Coordinate Plane Graph the reflection of the figure across the indicated axis. Write the coordinates of the vertices of the image. x-axis, then y-axis

16
**Additional Example 3 Continued**

Course 2 8-10 Translations, Reflections, and Rotations Additional Example 3 Continued A. x-axis. The x-coordinates of the corresponding vertices are the same, and the y-coordinates of the corresponding vertices are opposites. The coordinates of the vertices of triangle ADC are A’(–3, –1), D’(0, 0), C’(2, –2).

17
**Additional Example 3 Continued**

Course 2 8-10 Translations, Reflections, and Rotations Additional Example 3 Continued B. y-axis. The y-coordinates of the corresponding vertices are the same, and the x-coordinates of the corresponding vertices are opposites. The coordinates of the vertices of triangle ADC are A’(3, 1), D’(0, 0), C’(–2, 2).

18
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Check It Out: Example 3A Graph the reflection of the triangle ABC across the x-axis. Write the coordinates of the vertices of the image. x y The x-coordinates of the corresponding vertices are the same, and the y-coordinates of the corresponding vertices are opposites. B 3 C A A’ B’ C’ 3 The coordinates of the vertices of triangle ABC are A’(1, 0), B’(3, –3), C’(5, 0). –3

19
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here Check It Out: Example 3B Graph the reflection of the triangle ABC across the y-axis. Write the coordinates of the vertices of the image. x y B C 3 –3 The y-coordinates of the corresponding vertices are the same, and the x-coordinates of the corresponding vertices are opposites. C’ B’ A The coordinates of the vertices of triangle ABC are A’(0, 0), B’(–2, 3), C’(–2, –3).

20
**Additional Example 4: Graphing Rotations on a Coordinate Plane**

Course 2 8-10 Translations, Reflections, and Rotations Additional Example 4: Graphing Rotations on a Coordinate Plane Triangle ABC has vertices A(1, 0), B(3, 3), C(5, 0). Rotate ∆ABC 180° about the vertex A. x y A B C 3 –3 The corresponding sides, AC and AC’ make a 180° angle. Notice that vertex C is 4 units to the right of vertex A, and vertex C’ is 4 units to the left of vertex A. C’ B’ A’

21
**Translations, Reflections, and Rotations**

Course 2 8-10 Translations, Reflections, and Rotations Check It Out: Example 4 Triangle ABC has vertices A(0, –2), B(0, 3), C(0, –3). Rotate ∆ABC 180° about the vertex A. x y B The corresponding sides, AB and AB’ make a 180° angle. B’ C’ 3 A Notice that vertex B is 2 units to the right and 3 units above vertex A, and vertex B’ is 2 units to the left and 3 units below vertex A. 3 –3 C

22
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here TOTD 1. Identify the transformation. reflection 2. The figure formed by (–5, –6), (–1, –6), and (3, 2) is transformed 6 units right and 2 units up. What are the coordinates of the new figure? (1, –4), (5, –4), (9, 4)

23
**Insert Lesson Title Here**

Course 2 8-10 Translations, Reflections, and Rotations Insert Lesson Title Here TOTD 3. Graph the triangle with vertices A(–1, 0), B(–3, 0), C(–1, 4). Rotate ∆ABC 90° counterclockwise around vertex B and reflect the resulting image across the y-axis. x y 2 –2 –4 4 C C’ B’ A’ B A C’’ A’’ B’’

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google