Download presentation
Presentation is loading. Please wait.
Published byDerrick Fowler Modified over 9 years ago
1
Lecture 11 Energy transport
2
Review: Nuclear energy If each reaction releases an energy the amount of energy released per unit mass is just The sum over all reactions gives the nuclear reaction contribution to in our fifth fundamental equation:
3
Proton-proton chain (PPI) The net reaction is: But each of the above reactions occurs at its own rate. The first step is the slowest because it requires a proton to change into a neutron: This occurs via the weak force. The rate of this reaction determines the rate of Helium production
4
Proton-proton chain (PPII and PPIII) Alternatively, helium-3 can react with helium-4 directly: Yet another route is via the collision between a proton and the beryllium-7 nucleus This reaction only occurs 0.3% of the time in the Sun. In the Sun, this reaction occurs 31% of the time; PPI occurs 69% of the time.
5
The PP chain The nuclear energy generation rate for the PP chain, including all three branches: Near T~1.5x10 7 K (i.e. the central temperature of the Sun):
6
Example If we imagine a core containing 10% of the Sun’s mass, composed entirely of hydrogen (X=1), calculate the total energy produced by the PP reaction.
7
The CNO cycle There is a second, independent cycle in which carbon, nitrogen and oxygen act as catalysts. The main branch (accounting for 99.6% of CNO reactions) is: at T~1.5x10 7 K
8
Helium collisions Recall that the temperature at which quantum tunneling becomes possible is: As hydrogen is converted into helium, the mean molecular weight increases. To keep the star in approximate pressure equilibrium, the density and temperature of the core must rise As H burning progresses, the temperature increases and eventually He burning becomes possible
9
The triple-alpha process The burning of helium occurs via the triple alpha process: The intermediate product 8-beryllium is very unstable, and will decay if not immediately struck by another Helium. Thus, this is almost a 3- body interaction Note the very strong temperature dependence. A 10% increase in T increases the energy generation by a factor 50.
10
Nucleosynthesis At the temperatures conducive to helium burning, other reactions can take place by the capturing of -particles (He atoms).
11
Nucleosynthesis The binding energy per nucleon describes the stability of a nucleus. It is easier to break up a nucleus with a low binding energy.
12
Break
13
Summary We have now established four important equations: Hydrostatic equilibrium: Mass conservation: Equation of state: There are 5 variables (P, ,M r, T and L r ) and 4 equations. To solve the stellar structure we will need to know something about the energy transportation. Energy production
14
Energy transport Radiation: the photons carry the energy as they move through the star, and are absorbed at a rate that depends on the opacity. Convection: buoyant, hot mass will rise Conduction: collisions between particles transfer kinetic energy of particles. This is usually not important because gas densities are too low.
15
Radiation transport When we considered the properties of radiation, we found an equation relating the pressure gradient to the radiative flux: From this we can derive an expression for the temperature gradient, assuming a blackbody. In regions of high opacity, or high radiative flux, the temperature gradient must be steep to transport the energy outward.
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.